
AD-A259 292 (I

AFIT/GCS/ENG/92D-23

DESIGN RECOVERY FOR SOFTWARE
LIBRARY POPULATION

THESIS)
Chester A. Wright, Jr. D IC

Captain, USAF ELECT E

AFIT/GCS/ENG/92D-23 JSNI 4,1993

1K 93-00089 2

Approved for public rele le, -ýistr'buton unlimited

-_____ __ . A-

AFIT/GCS/ENG/92D-23

DESIGN RECOVERY FOR SOFTWARE LIBRARY POPULATION

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of DT.• QUAiTYY•INPpECMDI

Master of Science (Computer Engineering)

Accesion For
NTIS CRA&I
DTIC TAB
Unannounced 0

Justification
Chester A. Wright, Jr., A.A.S., B.S. -

By
Captain, USAF Distrioution I

Availability Codes
Avail and or

December, 1992 Dlst Special

Approved for public release; distribution unlimited

Preface

The purpose of the study was to investigate the possibility of recovering the design of existing

software to populate a reuse library. The immediate need is to populate the Automatic Program-

ming Technologies for Avionics Systems (APTAS) library, but the approach used should be valid

for general library population.

There were many people that helped me tremendously throughout this project. I would like

to express my appreciation to my sponsor, John Werthmann from Wright Laboratories/AART,

for allowing me the opportunity to learn and discover while applying school studies to a real-

world problem. I am most grateful to my advisor, Captain James Cardow for his patience and

perseverance in his effort to lead and guide me in 'he right direction. Finally, many thanks and my

love to my wife Tami for her concern, pressure, and understanding during the many early mornings

of study.

Chester A. Wright, Jr.

• III m i lm

Table of Contents

Page

Preface ii

Table of Contents iii

List of Figures vi

Abstract vii

1. Introduction 1-1

1.1 Background 1-1

1.1.1 Executable Specifications 1-2

1.1.2 Automatic Program Generation 1-3

1.1.3 Combining Executable Specifications and Automatic Program

Generation 1-4

1.2 Automatic Programming Technologies for Avionics Software (APTAS) 1-4

1.3 Problem Statement 1-5

1.4 Assumptions 1-5

1.5 Scope 1-6

1.6 Summary of Current Knowledge 1-6

1.7 Approach/Methodology 1-7

1.8 Materials and Equipment 1-7

1.9 Sequence of Presentation 1-7

II. Literature Review 2-1

2.1 Introduction 2-1

2.2 Reengineering 2-2

2.2.1 Byrne's Model 2-3

iii

Page

2.2.2 Software Design Recovery 2-9

2.3 Automatic System Generation 2-11

2.3.1 The Draco Approach 2-11

2.3.2 Issues 2-12

2.4 APTAS 2-13

2.5 APTAS Library Population 2-16

2.6 Review Summary 2-18

III. Methodology 3-1

3.1 Analysis and Planning Phase 3-1

3.2 System Renovation Phase 3-3

3.2.1 Background 3-4

3.2.2 Source Code Analysis 3-6

3.2.3 Design Recovery 3-8

3.2.4 Information Inspection and Redesign 3-9

3.2.5 Reimplementation 3-9

3.3 Library Population 3-10

3.3.1 Source Cude Analysi3 3-10

3.3.2 Design Recovery 3-13

3.3.3 Information Inspection and Redesign 3-14

3.3.4 Reimplementation 3-15

3.4 Summary 3-15

IV. Implementation 4-1

4.1 Introduction 4-1

4.2 Preliminaries 4-1

4.3 Source Code Analysis 4-2

4.4 Design Recovery 4-3

iv

Page

4.5 Information Inspection 4-4

4.6 Redesign 4-5

4.7 Reimplementation 4-6

4.8 Summary 4-7

V. Conclusion and Recommendations 5-1

5.1 Conclusion 5-1

5.2 Recommendations 5-1

5.2.1 The Knowledge Base 5-1

5.2.2 Selecting Modules 5-2

5.2.3 Translating Modules 5-2

Appendix A. Module Characteristics A-1

A.1 Description A-1

A.2 ICON Representation A-2

A.3 Components A-3

A.4 Synthesis A-3

A.5 Selection A-4

Appendix B. System Structure and Population B-1

Appendix C. Summary of Z Notation C-1

Appendix D. Selected FORTRAN Module D-1

Appendix E. Developed CIDL Module E-1

Bibliography .. BIB-1

Vita VITA-1

v

List of Figures

Figure Page

1.1. Classical Software Lifecycle Model 1-2

1.2. Automatic Program Generation 1-3

1.3. Design Recovery for Software Library Population 1-6

2.1. Overall Thesis Effort 2-1

2.2. Relationship Between Terms 2-3

2.3. Control Area Relationships 2-4

2.4. Control Areas and Interest Items 2-6

2.5. Reengineering Process Phases 2-7

2.6. APTAS Organizational Diagram 2-14

2.7. GUI Representation of a Module 2-15

2.8. Run-Time Display .. 2-17

2.9. Sample CIDL Module 2-18

3.1. Analysis and Planning Phase 3-2

vi

AFIT/GCS/ENG/92D-23

Abstract

The thesis research investigated design recovery as a means of populating a reuse library.

The targeted library was part of the Automatic Programming Technologies for Avionics Systems

(APTAS). APTAS uses a knowledge base of forms, to present questions to a user, and rules, to

select the forms to present and choose existing library modules to use in composing a new system.

The approach applied the reengineering model developed by Eric Byrne to accomplish planning for

the project, expanded the renovation phase of this model to cover the actual design recovery, and

applied the expanded model to populating the library.

Usir.g the model in the project showed that design recovery is feasible in populating the

library. However, if the recovered design could not be used directly, it could be used as a guide

in developing new components. Additionally, certain modules make better candidates than others.

Ideal candidates are self-contained in that they receive a value, perform a computation, and return

a value. Once the module starts performing too many operations, expertise is required in the

module behavior in order to separate the component for reuse.

vii

DA3SIGN RECOVERY FOR SOFTWARE LIBRARY POPULATION

I. Introduction

1. 1 Background

Developing any system requires defining what the system is to accomplish, identifying re-

sources required to build the system, and putting the resources together to produce the desired

product. Once the system is in existence, it is used for the intended purpose, except during periods

when the system requires maintenance. The waterfall model, shown in Figure 1.1, represents all

of these processes as phases in the lifecycle of a software system. The analysis phase defines the

user's requirements. Actions in this phase provide a detailed description of the problem that needs

to be solved; documents information flow and structure in the current environment; and describes

hardware, software and human interfaces as they will exist (16). The product of this phase is

a document, called the program specification, listing all of the requirements the system is to ac-

complish. Using this specification as input, the design phase translates each requirement into a

software representation (16). Additionally, required system resources are identified. The output of

this phase is the design document outlining the necessary software modules and their functionality.

At the code phase, programmers take the design document and convert each module into a form

that can be executed on the computer system. During test, system behavior is compared with the

requirements to ensure there is a correct correspondence. Once the system leaves the test phase, it

passes to the customer and is used and maintained as necessary.

Developing software using the waterfall model has created problems. General Randolph, as

quoted in (2), summed up the nature of the problem with software development when he said

"We've a perfect record...: we've never made one on time yet".

In his studies of software development problems, Brooks (6) refers to work by Charles Portman,

manager of ICL's Software Division. Portman initially found his programming teauns were taking

twice as long as expected. When this slippage pattern appeared, he asked his teams to keep careful

1-1

SProgram Specification

SAnalysis -

S~Program Design
Design

VStructured Program

Tested Program

i IMaintain

Figure 1.1. Classical Software Lifecycle Model

logs of time usage and found the teams were only able to utilize 50% of the work week as actual

programming and debugging time. Machine downtime, meetings, paperwork, company business,

and higher-priority, short, unrelated jobs were among the culprits using the remainder of the teams'

time.

There is another important side effect that results from spending too much time developing

software. Brooks notes that often the product is obsolete upon (or before) completion. He refers

to this as one of the woes of developing software.

Executable specifications and automatic program generation are two ideas that may provide

a means to reduce the time involved in the development of software as compared with using the

classical software lifecycle model. When these ideas are combined there are benefits for the entire

software development process.

1.1.1 Executable Specificathow.. As shown in Figure 1.1, the software development process

has many phases, and usually the same people are not involved in each phase. The only expertise

guaranteed to pass between phases is the document produced at the end of the phase. If the

document is not complete, there is a possibility of introducing errors. Additionally, once the

1-2

Ue' Ned Abstraction Pr - Progra
AnalysisGeneration

Figure 1.2. Automatic Program Generation

i.nalysis phase is complete, the customer is usually not involved again until the end of the testing

phase. This means errors or misunderstandings in the original specification are propagated through

the development and not discovered until testing or operation. Errors not found until this phase

are more costly to fix. Putting the specification into a form that could be executed on a computer

for the customer's benefit would allow adjusting the specification to better represent the customer's

needs. This fine tuning reduces the number of errors passed through the following phase by catching

problems early. Also, the customer can see the system in action and is assured that the right system

is being built.

1.1.2 Automatic Program Generation Lewis (12) describes a code generator, as it relates

to automatic program generation, as a system that "...takes a programmer's inputs in the form.

of some abstraction, design, or direct interaction with the system and writes out a source program

that implements the details of the application." What he sees as inputs to the system are ab-

stractions that hide the coding details. This distinguishes code generators from tools that simply

provide language templates. Using this definition allows simplification of the software development

model to the representation presented in Figure 1.2. The number of phases involved in the soft-

ware development lifecycie has been reduced leading to increased programmer productivity, fewer

translation errors, and no direct maintenance on the code. Programmer productivity increases

since the coding phase has been eliminated. Also, more products can be produced since it is only

necessary to develop requirements. There are fewer errors since there are fewer people and fewer

phases involved. With automatic program generation, there is no need to do maintenance on the

code since the code is generated from the analysis abstractions. The abstractions are adjusted and

new code is generated.

1-3

1.1.3 Combining Executablc Specifications and Automatic Program Generation Executable

specifications add value to the automatic generation of code. As mentioned above, finding errors

early makes code production more cost effective. Being able to execute the specification gives the

customer the opportunity to evaluate system operation before code is generated. Also, executable

specifications combined with automatic code generation aids maintenance. In typical software

maintenance environments, the documentation for the software does not match the functionality

of the software. This makes it necessary to analyze the software to gain an understanding of its

functionality before performing any maintenance. This activity must be performed over and over

each time there is a need to change the software. This is very labor intensive, and each time a change

is made the documentation bears less resemblance to the code. Using the combined methods, it

is not necessary to do maintenance on the software. The specification can be changed and the

new code can be generated. Now the documentation always reflects the status of the code. As

mentioned by Arnold (3), if the intermediate form of the specification is available for manipulation,

additional documentation can be generated. These could be items such as flow charts, dataflow

diagrams, or user's manuals.

The next section describes a system that has been developed to experiment with combining

the ideas of executable specifications and automatic program generation in a limited domain.

1.2 Automatic Progratnminrg Technologies for Avionics Software (APTAS)

APTAS is a system owned by Wright Laboratory which will be used as a proof-of-concept for

executable specifications and automatic program generation for avionics systems. APTAS operation

begins by taking in a specification for an avionics tracking system. The system selects software

modules from an internal library based on rules in the system knowledge base. Once the modules

have been selected, APTAS can simulate the behavior of the tracking system under development

so the specification of the system can be tuned. After the desired behavior is represented, APTAS

can generate the Ada code for the system.

APTAS comp.oses modules from its library to develop the new system. However, the current

APTAS library is not extensive. To get the full benefit of APTAS, the internal library must contain

a large selection of tracking modules. In the past Wright Laboratoi'y coded modules on an as-needed

1-4

basis. Presently they have modules in many programming languages. Transforming the modules

will be labor intensive, so automation of the transformation will be looked at to speed the task iii

this and similar situations.

This thesis looks at design recovery as a means for transforming existing modules to fill

the librali. Byrne (7) has developed a new reengineering model that outlines many of the issues

involved in accomplishing the task. Both design recovery and Byrne's model are described in detail

in Chapter 2.

1.3 Problem Statement

The work that needs to be accomplished to populate the library can be divided into four

areas.

Identify the intermediate language format used in the APTAS library. A template
will be designed identifying important parameters and specifications for library
modules.

9 Characterize sample modules that need to be placed into the present library. This
will entazl identifying parameters required by the modules, identifying values that
are returned by the modules, learning how to invoke the modules, and also identi-
fying the modules' functionality.

a Outline a procedure that will take the module behavior and map it into the format
of the template. This is also a point in the reengineering process to consider
redesign of the existing modules. Ideally the mapping will produce behavior rules
that APTAS can use as part of its module selection criteria.

* Implement the mapping function and test the newly derived APTAS functionality
with the behavior of the original module. It is hoped that the conversion procedure
can be fully automated.

1.4 Assumptions

Developing a mapping process is dependent upon being able to characterize the present AP-

TAS knowledge base and being able to develop a template in the intermediate language accepted

by APTAS. It will also be necessary to characterize modules that are to be converted. This involves

capturing usage information and parameter data for each module.

1.5

Captured Restructured'

Design - Design

Existing New
Code Code

Figure 1.ý. i"esign Recovery for Software Library Population

1.5 Scope

The research proposed here will be limited to detailing the renovation phase of Byrne's model

and applying the model to the reengineering of selected tracking modules.

1.6 Summary of Current Knowledge

This thesis effort researches the possibility of using design recovery as a method for software

library population. This process is presented in Figure 1.3. Beginning wiLh existing source code, a

method will be developed to capture and reconstruct a design representation. Two important issues

in design recovery are determining design decisions and representing the design. Design decisions

can be used to restructure the recovered design. This can be done to increase understandability,

efficiency, and maintainability of the software and the design. A good representation choice will also

aid in understanding and make conversion to the new system easier. Also considered at this point

is adding features to the recovered design. Once the design is finalized, it must be converted to the

new form. Since A PTAS will generate new systems utilizing its software library, it is necessary to

produce a new module in a format accepted by APTAS.

This research will not be concerned with changing the functionality of the existing software,

so the design will not be restructured. It seeks to capture the design as-is and represent it for use

in APTAS. Since the final form is for an existing system, the final representation issues have been

decided. However, the actual mapping proces, must be addressed. These concepts will be covered

in the literature review.

1-6

To ensure that all facets of the work ale covered, Byrne's (7) reengineering process model will

be used. Byrne's paper outlines all of the phases required for a reengineering project. It details the

analysis and planning phase and gives good criteria for determining the need for a reengineering

effort. A summary of his model is presented in Section 2.2.1.

1.7 Approach/Methodology

The thesis effort will begin with a survey of the literature to uncover present design recovery,

automatic program generation, and reuse efforts. This will be followea by studying the intermediate

library language to understand its structure and requirements. A general study of the C language

will be necessary to become familiar with the modules that will be conve'ted. Once this is complete,

a mapping process will be developed, implemented, and tested.

1.8 Materials and Equipment

A complete APTAS system is required to accor.mr 1̀ -h this research. Additionally, access to

the internal intermediate language formats and spezifications are critical.

1.9 Sequence of Presentation

The next chapter presents a review of current work related to this thesis effort. Chapter 3

outlines the methodology that will be used to solve the problem outlined above. Chapter 4 de-

tails implementation of th3 methodology and Chapter 6 summarizes the results of the research.

Chapter 5 also gives recommendations for additional work in the research area.

1-7

HI. Literature Review

2.1 Introduction

The research presented in this thesis looks at software design recovery for library population.

To better understand what is being proposed, it is necessary to understand how this fits into the

broader scheme. At the outermost level of this research effort is a system designed to automatically

generate other sy-.ems (see Figure 2.1). It accomplishes the generation by taking in a specification

Automatic Component
Specification System Compilation New

Generation System

!L

Component
Library

Preaent System

Thesis Effort Recovered

Components

, Reengincering

Figure 2.1. Overall Thesis Effort

and using its ii.ternal composition rules to select available modules from its internal component

library that will implement the specification. Once the correct collection of components is selected,

the automatic system generator can create the new system. In its present configuration, the top

2-1

level system does not have many components in the internal library. This limits the types of new

systems that can be produced.

Prior to APTAS, systems were constructed using the specification and manual refinement

until a new coded system existed. As a result, there are existing software components but in many

forms and languages. This research focused on reengineering to make existing modules available for

the internal library of the top-level system. The reengineering effort examined the components as

they existed with the intent of capturing their design and putting the design into a form accessible

by the automatic system generator. Automatic generation of effective systems requires a large

collection of library modules. Automation of the reengineering task will make best use of the

automatic system generator.

This review presents current research efforts on reengineering and details one specific pro-

posal by Byrne for modeling a reengineering project. It also covers automatic system generation

with emphasis on using library components. One specific top-level system, called APTAS, and its

relationship to automatic system generation and library population is defined as this system will

be used as the testbed for the research. Finally, the direction of the thesis is given.

2.2 Reengineering

In any area of study confusion results when everyone has their own terms. For the field to

communicate and grow, it is necessary to come up with a common set of definitions. Chikofsky

and Cross (9:13-17) have baselined the field by defining the key terms associated with software

reengineering. They begin with the model of the software lifecycle shown in Figure 2.2 and give

the following definitions:

forward engineering the traditional process of moving from high-level abstractions
and logical, implementation-independent designs to the physical implementation
of a system.

reverse engineering the process of analyzing a subject system to identify the system's
components and their interrelationships and to create representations of the system
in another form or at a higher level of abstraction.

redocumnentation is a subset of reverse engineering that creates or revises a
semantically equivalnt representation within the same relative abstraction
level. The resulting forms of representation are usually considered alternate

2-2

REQUIREMENTS DESIGN IMPLEMENTATION

Forward Forward
-- - - - Engineering, ------- Engineerint "l

Reverse Reverse

-- - - - -Engxineering Engineering

Design m& - Design

Recovery Recoverl

SReengirteering - Reengineering I

Restructuring Restructuring Redocumentation,
Reatruc&urinrg

Figure 2.2. Relationship Between Terms (9)

views (e.g., dataflow, data structure, and control flow) intended for a human
audience.

design recovery is a subset of reverse engineering in which domain knowledge,
external information, and deduction or fuzzy reasoning are added to the obser-
vations of the subject system to identify meaningful higher level abstractions
beyond those obtained directly by examining the system itself.

restructuring the transformation from one representation form to another at the same
relative abstraction level, while preserving the subject system's external behavior
(functionality and semantics).

reengineering also known as both renovation and reclamation, is the examination and
alteration of a subject system to reconstitute it in a new form and the subsequent
implementation of the new form.

Throughout the remainder of this thesis use of these terms will be with the meanings given here.

2.2.1 Byrne's Model Byrne's work studies the process of software reengineering. His goal

is to determine how a software reengineering project can be accomplished. He poses two questions

that must be answered for any reengineering project: what information must be produced and when

can this information be produced. The answers to these questions determine the information used

by the process and determines the tasks and their relationships within the process. Most of the

present work in reengineering emphasizes the technical aspects that must be resolved (7). It turns

2-3

out that technical aspects are only one key to a successful project. Byrne has identified project

management, technical work, and support as the areas that control the entire reengineering process.

As shown in Figure 2.3, these processes are interwoven and must be handled together to make a

Figure 2.3. Control Area Relationships (1)

successful project. One other issue Byrne addresses is the need to specify the reengineering process

unequivocally. He chose the specification language Z to overcome the problems that result when

English is used. The following sections give an introduction to Z and present a general overview

of Byrne's model. Also covered are the tasks for the three control areas previously mentioned and

the mapping of these tasks to the phases of a reengineering project.

2.2.1.1 Introduction to Z Z is a language fc; formally specifying computer systems.

It uses the mathematica' concepts of set theory and logic. For a detailed discussion, see (18). What

2-4

S - i i ii i I Ii

is presented here is a few of the basics to allow an understanding of Byrne's model'. The basic

feature of Z is the schema, and it has the following form.

schema - name

signature

predicate

The schema-name allows the schema to be included within other scheemas. The signature

identifies variable names and their types. The predicate describes relationships among the variables.

These schemas are used to describe states, events and observations. States are mathematical

structures which model a system, events are occurrences of interest, and observations are variables

that can be examined before and after an event. Here are two example schemas.

increment
counter

Acounter
value, limit : AP"

value' = value + I
value < limit

limLit' = limit

The schema on the left represents a counter state space. It says that there are two variables

associated with the counter, its value and its limit, and these variables are natural numbers A.

The predicate says the value of the counter must always be !ebs than or equal to the limit. The

increment schema represents an event that changes the counter. Note how it uses the name of the

schema on the left and the use of A to signify that it chaunes the schema. Here the predicate shows

that the new counter value value' is the result of adding one to the present counter value value.

The predicate also shows that there is no change in limit.

2.2.1.2 Model Overview By defining a model for the process of reengineering, Byrne

clarifies the properties of information objects and their interrelationships without trying to capture

the variety of documents involved in the process. At this level people can concentrate on why there

'See Appendix C for a complete list of the Z symbols used in this research

2-5

1 I I I I I I I I I iMod

MANAGEMENT

Define Approach TECHNICAL
Estimation Determine Motivations and Objectives
Define Organizational Structure Analyze Lnvironments

Define Project Procedures and Standards Collect Inventory
Identify Resources Test Planning
Plan System Transition Target System Testing
Scheduling Documentation Planning
Identify Tools Create Documentation

Define Acceptance Criteria Source Code Analysis
Conflict Resolution Design Recovery
Project Authorization Information Inspection
Personnel Management Redesign

Reimplementation
Analyze New Source Code

SUPPORT Acceptance Testing
System Transition

Configuration Management

Quality Assurance
Project Tracking

Figure 2.4. Control Areas and Inte-est Items

must be a reengineering effort, what is expected of the effort, and other high-level issues. The list

of tasks he defines as needing to be addressed for each of the reengineering process control areas is

given in Figure 2.4.

2.2.1.3 Process Phases The reengineering phases identified by Byrne associate the

interest items from Figure 2.4 with points in the reengineering process as shown in Figure 2.5. Each

interest item is marked with S, M, or T to indicate whether it comes from the Support, Management,

or Technical, respectively, control area. These phases cover 24 of the 30 items. Miscellaneous tasks

encompass the six remaining items. These are the things that don't fit into any one phase or must

be carried on throughout the project.2

9 configuration management (S)

* quality assurance (S)

e process tracking (SI

e project authorizdtion (M)

* personnel management (M)

9 conflict resolution (M)

'See Byrne (7) foa a complete description of the reeltgineering model.

2-6

ANALYSIS AND PLANNING
Determine Motivations and Objectives (T)
Analyze Environments (T)
Collect Inventory (T)
Define Approach (M)
Documentation Planning (T)
Plan System Transition (M)
Define Asceptsnce Criteria (M)
Define Project Procedures and Standards (M)
ldentify Resources (M)
Identify Tools (M)
Teat Planning (T)
Estimation (M) REDOCUMENTATION
Define Organizational Structure (M) Analyze New Source Code (T)
Scheduling (M) Create Documentalion (T)

RE12NOVATION PHASE
Source Code Analysis (T)
Design Recovery (T)
Information Inspection (T)
Redesign CT)

I ~Reimplementatlon (T1)

VERIFICATION PHASE ACCEPTANCE AND SYSTEM TRANSITION

Acceptance Testing (T)
System Transition (T)

Figure 2.5. Reenigineering Process Phases

2-7

A look at the Z specification for part of the analysis and planning phase gives more insight into the

power of a formal specification language. Byrne takes the analysis and planning phase and details

it in Z. As Figure 2.5 shows, this phase has 14 associated tasks. The details of each task look

very similar in Z. So detailing any one task requires specifying the domain of the task, specifying

the variables required to model the task, and specifying the operations available for that task.

Begihning with this definition

MOTIVATION •- set of all possible reengineering motivations

OBJECTIVE • set of all possible reenginee1ing objectives

Byrne develops the following schema called the project definition that tracks ard labels all reasons

and goals for the reengineering project.

-DEFINITION

reasons: LABEL -+ MOTIVATION

goals: LABEL -# OBJECTIVE

The initial value for the project is given in the schema

_INITDEFINITION

DEFINITION

reasons = 0

goals =

The operations identified on the DEFINITION schema are

Add-reason Add-goal
Delete-reason Delete-goal
Get-reason Get-goal
List-reasons List-goals

and they each represent changes and operations on the state of DEFINITION. The schemas below

show the specification for these operations with respect to MOTIVATIONS. The specification for

2-8

OBJECTIVE is similar. There are several new symbols in these definitions: ? signals a variable

used for input; ! signals a variable used for output; and 'signals the new value of the given variable.

Add - reason
_ Delete - reason

AD'EFINITION ADEFINITION
m?: MOTIVATION

P?: LABEL
P? : LABEL

I? • dom reabons
1? 0 dorn reasons

reasons' = reasons U 4!? - n?) reasons'= {f7?) . reasons

goals' = goals
goals' = goals

Get - reason

E-DEFINITION

P?: LABEL

m!: MOTIVATION

m! = reasons(l?)

List - reasons

EDEFINITION

1: LABEL

m: PILABEL x MOTIVATION)

m= {1 : LABEL; m : MOTIVATION j reasons(l) = m}

The other tasks of the analysis and planning phase were defined similarly. The first step taken

was to defive the domain and the variables. The second step identified the various operations that

were required. And the fina.l step specified the operations.

2.2.2 Software Design Recovery Two essential steps in recovering a design are understand-

ing what went into a design and representing this information. This section covers work that has

been done in design recovery.

2.2.2.1 Categorizing Design Decisions Rugaber, Ornburn, and LeBlanc (17) derived

a method of characterizing design decisions by analyzing programming constructs. They note that

2-9

U r -r - -- I I P 11IlI i ,III

during program development, many decisions are made. Some address the problem domain and

how it should be viewed and modeled, while others address constraints imposed by the solution

space, including the target machine and language. The categories they give are listed below.

composition and decomposition

encapsulation and interleaving

generalization and specialization

representation

data and procedures

function and relation

They examine a FORTRAN program and come up with the following examples as indications of

design decisions.

interleaving program fragments to accomplish two calculations in a single program
section.

representing structured control flow in a language that does not support them

(e.g., Repeat-Until, If-Then, If-Thei,-Else, and Case).

interleaving by code sharing the Else part of and If-Then-Else.

data interleaving by reusing variable names for two different purposes.

generalizing interpolation schemes

variable introduction to save on repeated computation.

generalizing interval computation

representing structured control flow

program architecture

They conclude that representing design decisions will be a major factor in effective reuse. The

ideal representation must be easy to construct during development and reconstruct during reverse

engineering. Also, it must be formal enough to manipulate automatically and must be capable of

representing 0l1 levels of design decisions.

2.2.2.2 Calling Hierarchy Another method used for design recovery begins by de-

termining variable declarations and the respective modules (10). The next step is to find the

lowest-level modules in a calling hierarchy. These are the modules that do not call other modules.

This is repeated for each level until a tree-like structure has been developed representing the calling

2-10

structure of the design. Lockheed has ased this method to gailn code understanding before group-

ing code segments into Ada-like structures. An additional use they found for this information is

identification of components for poe-ilation of a software repository.

2.3 Automatic S,.slem Generation

Present methods for generating systems have centered on two methods: generation of systems

by composing components and generation of templates from a specification. Composing from

components requires having a library of modules available a.d having a process for searching and

selecting components. The template method yields a skeleton with coding details that must be

completed by hand. Two applications are presented here that make use of these methods.

2.3.! The Draco Approach Neighbors (15) researched automatic programming using an

experimental prototyping system called Draco. It uses a domain language to describe programs in

each different problem area. A problem area is considered a domain. Objects and operations repre-

sent analysis in'ormation about a problem domain. Analysis information states what is important

to model *n the problem. This type information is reused. Alsc, objects and operations from one

domain language cr.n be modeled by objects and operations from other domain languages. This

relationship represents different design possibilities. Design information states how the problem is

to be modeled. Design is reused each time one of the design possibilities is used. At some level of

development an executable language is needed. This is the bottoni of the modeling hierarchy.

The traditional development cycle started with user and system analyst interaction to specify

what the system was to do. This specification was passed to the designer to who determined how

the system would accomplish the specifiea behavior. Draco adds two new human roles. A domain

analyst examines needs and requirements of similar systems (the same problem area). This is passed

to a domain designer who specifies different implementations for the various objects and operations

in terms of domains already known to Draco. At this point in the development, the sys:.em analyst

and user interact considering existing domains (analysis reuse). At the next stage, the designer

interacts with Draco to choose a particular implementation (design reuse). The basis of the Draco

work is the use of domain analysis to produce domain languages which may be transformed for

optimization purposes and implemented by software components, each of which contains multiple

2-11

refinements each of which make implementation decisions by restating the problem in other domain

languages (15:565-566).

2.3.2 Issues Biggerstaff and Richter have researched the technologies that are available to

address reuse. The two major areas they came up with are composition and generation. These

categories were determined from the nacure of the reused items. The composition group is distin-

guished by having atomic units that are ideally unchanged in each new application. Their example

of this type of reuse is the Unix pipe that allows customizing commands by taking the output of one

command and sending it through another. Their generation group is characterized by two types

of patterns: code patterns and transformation patterns. Examples of these types of reuse are ar-

plication generators and transformation systems. The former reuses its own internal code pattex,_-

across the generation of many systems. The latter reuses internal rules during the transformation

process. In both cases it is the process that is being reused. Their assessment of reuse is that there

are dilemmas that require trade offs, there are operational issues to address, and there is the issue

of the level of reuse.

Within the dilemmas trade offs can be seen from many perspectives:

applicability versus payoff Technologies that are very general have a much lower
payoff than systems that are narrowly focused.

component size versus reuse potential As a component grows, the payoff from
reuse increases. However, the component becomes more specialized decreasing
its potential for reuse.

cost of library population Usually projects are budgeted to meet short-term goals.
Large initial investment for potential long-term payoffs is not seen as a viable

alternative.

The operational issues they identify are finding, understanding, modifying, and composing

components. Finding components includes finding exact matches as well as similar components.

Without an exact match, the similar components can be used in developing a new component.

Understanding a component is important to using it correctly and even more important if the

component must be modified. Modifying components allows the system to evolve. They identified

composing components as the most challenging because the components must be represented as

distinct entities with specific characteristics and at the same time as a composition with a different

characteristic.

2-12

The level of reuse can either be code or design. Code reuse has been successful in numerical

computation routines. However these areas are narrow domains that are well-understood. These

domains are also not rapidly changing. Design reuse is seen as an alternative, but it ruquires further

study. If designs are represented in programming languages the designs become too specific. If they

are represented very generally, they cannot be processed in machine form.

After their research they speculate that there will be very little immediate progress because

of the initial investment required. Also additional research is required to overcome the design

representation issues.

2.4 APTAS

As stated earlier, the research proposed here will make library modules available for a system

that automatically generates programs by composing components. Figure 2.6 is an APTAS system

diagram which emphasizes the interfaces presented to the user during development of an application

(referred to in APTAS as a pboject). An engineer using the system begins defining a tracking

aDplication's specification in the taxonomy summary window. It contains of a set of text lines,

each representing a form. The forms present questions using the dynamic forms interface. A form

takes numeric, text string, exclusive choice, or checklist information. By answering the presented

questions, the specification is developed. The number of entries appearing in the summary window

increases, reflecting the effects form selections have had in pruning the taxonomy tree toward a

specific architecture.

When the forms are complete, they are submitted to the architecture generator. The generated

architecture is presented in the graphical user interface (GUI). It presents a graphical representation

of the generated architecture using components that can be edited to provide the specification's

details before code synthesis takes place. There are four types of icons used in the GUI: a box

represents a module; a circle represents the communications ilnterface of a module; a diamond

represents the interface function of a module; and a triangle represents a parameter of a module.

There are also lines representing relations between the modules. A sample module is presented in

Figure 2.7.

2-13

Dynamic Architecture Graphical
Form. User
Interface

Trackingl T~xonomy
and Runm-Time

Cuding Design |Displa~y

Kntowledge Base

Ad..
Progrtm 11]As

Progr~mTranslator

Figure 2.6. APTAS Organizational Diagram (13)

2-14

O w l...... . *.

UT:UPDATE TRAkCKS ITiT: INITIATE TENTATIVE TRACKKS

EMC:RESOLVE MISSINGCONTACTS ~-

A -

X,4*
I -

..DATABAS 2 S>FE4
REPC:ESOLVE EXTRA COUThCTSyV

,x PGCA:PR&ýS GATE! CONrAQl ASSOCIATION

TENTATIVE TO RE ýLAR-THRESHOLD:INT

DFCOYS:BOOI. , ~ TERMINATED REG TLK SAVE LIMIT: INT

PLATFORM: TERMINATED TENT TACK SAVE IT:N

A A
FALSE ALA.RM PROBABILITY :RA INITIAL GATE DELTAS:RECORD [REAL; REAL]

TAR.GET DENSITY :&GETDENZOITYTYPE TARGET TRAJECTORY :ýGEITTRAJECTORYTYPE'

A TARGETPROBASILITPOF DETECTION 'REAL
REUE-ET-ATOSRCR[EL REAL]

AA
TERMINATION THRESHOLDS: RECORD [INT; INT] INCREASED DELTA FACTORS: RECORD [REAL; REAL]

Figure 2.7. GUI Representation of a Module

2-15

When the specification has been completed in the graphical user interface, an implementation

may be generated in CIDL by pushing the Synthesize button ou the APTAS system control panel.

CIDL is a high level system design language developed at the Lockheed Software Technology Center

(LSTC) as part of LSTC's Software Synthesis project. Once the C'DL code has been generated, an

equivalent Ada implementation can be generated by pushing the Trauslate button on the APTAS

system control panel. The behavior of the generated CIDL and Ada tracker implementations may be

tested by invoking the Execute button's menu from the APTAS system control panel, then selecting

either Run CIDL or Execute Ada. When a selection is made, the code will begin executing, and a

window will be displayed showing the output of the tracker. The output is simultaneously written

to files for future analysis and/or utilization of the Run-Time Display program. The data generated

from the executing tracker may be presented in a visual display (shown in Figure 2.8). If the user

is not satisfied with the test results, he/she may return to the GUI or taxonomy summary window

to modify the specification and repeat the synthesis and test processes. The tracking taxonomy and

coding design knowledge base is used to support multiple phases of the specification and synthesis

process.

2.5 APTAS Library Population

Extending the tracking taxonomy and coding knowledge base entails writing CIDI 'mplemen-

"tations of primitive modules, rules which determine when the primitive is appropriate for a given

application, and the questions to present to the user which will elicit the information needed to

evaluate those rules. The CIDL module construct, used to define the reusable primitive software

components of the APTAS knowledge base, defines a new type which encapsulates a set of types,

declarations, and functions. A module type declaration includes up to four sections: parameters,

interface, structure, and behavior. Parameters provide the generic character of modules. The exact

properties of each instantiation of the module type depend on the parameter values provided when

the instance was created. A sample module is given in Figure 2.9. The interface describes which

components of the module are accessible outside the module. The structure section contains the

local declarations. The behavior section describes the processing which takes place each time the

module type is instantiated. Instantiation is performed by a call to the module creation function

which is generated when the module type is compiled. Adding a primitive to the taxonomy requires

2-16

/~~~
......

,..'..
. ... '

000 130.1 2.81 empty I Regular
0001 138.05 29.79 empty I Tentative

0000 134.72 26.20 empty 2 Regular
0001 134.69 26.21 expected 0 Tentative

0000 133.02 27.64 expected 0 Rgua
0001 139.02 27.64 expected 0 Rejl ar

C0001 143.56 29.09 expected 0 Regular

+ 0000 148.30 30.55 expected 0 Regular
+ + 000I1¶50.60 31.37 empty I Regular

+ 0000 153.1 32.01 expected 0 Regular
+0001 162.00 36.49 empty 2 Regular

0ON0 158.24 33.50 expected 0 Regular
0001 170.5 41.58 elpty 3 Regular

25 0000 163.47 34.99 empty 1 Regular
0001 180.21 48.87 elpty 4 Regilar

0000 160.6 36.50 empty 2 Regular
0001 190.21 49.67 empty 4 Terminated

0000 174.54 38.11 expected 0 Regular
0001 190.21 48.9? empty 4 Terminated

0000 180.35 39.68 expected 0 Regular
2S So 75 1oo 12S 150 175 200 Z5 25 0801 190.21 48.87 empty 4 Terminated

0000 186.31 41,25 expected 0 Regular
0001 190.21 48.87 empty 4 Terminated

0000 192.44 42.87 expected 0 Regular
0001 190.21 48.87 empty 4 TermInated

0000 198.76 44.45 expected 0 Regular
0001 190.21 48.07 empty 4 Terminated

0000 Z05.24 46.08 empty I Regular
01001 190.21 48.87 elpty 4 Terminated

1w. R

--- A. ----- ./ .~ .." ... M *A

Figuie 2.8. Run-Time Display

2-17

module Sensor..Model

Paranmeters

sesaor: SensorType;
targettspeca: sequence(GeericTargetSpec);
perturbationifactor: real;
iterattions: int;

scan.frana..,ut: event (GenericScanFt'ame)

Structure

loop.xounter: store(int);
sonaor..time: store(real);

Behavior

loop.counter := 0;
senior-Lime := 0.0;

EndModule;

Figure 2.9. Sample CIDL Module

adding the appropriate forms information and module selection criteria. These steps are performed

by first determining where the new primitive module fits into the existing taxonomy, determining

the conditions under which it should be selected for a particular application, and adding the appro-

priate entry to the list of available modules. The next step is to determine the appropriate forms

and/or questions for existing forms required to solicit the information needed to evaluate those

conditions.

2.6 Review Summary

This chapter has presented current work in the field of design recovery and automatic program

generation. There was also a summary of Byrne's reengineering model. This research will use

the model as a framework to capture all of the issues that need to be addressed in outlining a

reengineering project. The methods of design recovery and automatic program generat -'n will be

examined for a solution to the problem of populating the APTAS library.

2-18

III. Methodology

This chapter outlines the two-step approach selected to solve the library population problem.

The first step entails using Byrne's reengineering model to guide the project. As discussed earlier, a

reengineering project involves technical issues as well as support and management issues. Byrne's

model was chosen because it deals with all of these issues. With his complete description of

the analysis and planning phase, Byrne has a good foundation for determining the need for a

reengineering effort and the resources that will be required to complete the project. Additionally,

the amount of detail in the model will ensure that all issues are addressed and tracked. A major part

of the first step elaborated the renovation phase of the reengineering model, in Byrne's notation,

since it was not developed in detail by Byrne. The second step was to reengineer the existing

software in the new form. This step applied the concepts of the first step serving as a proof-of-

concept for the model and for using design recovery as a solution to the library population problem.

The approach taken in this chapter is to demonstrate how to use Byrne's model by applying his

specification of the analysis and planning phase to the library problem, to develop the renovation

phase, aud finally to apply the model to the library problem.

3.1 Analysis and Planning Phase

Byrne's original work in this phase was done using Z. This language is based on formal logic

and set theory. With this very mathematical foundation, it reducer the am)iguity in the resulting

model. This research will continue using Z to maintain a low level of ambiguity. An added benefit

will be easier enactment of the model should that become necessary. REFINfTM is an example of

a programming language that could be used to enact this model since it to is based on set theory

and formal logic.

The previously defined Analysis and Planning phase is shown in Figure 3.1. The tasks have

.been identified by Byrne and represent management (M), technical (T), or support (S) issues. Each

task has associated characteristics that must be tracked. To follow these characteristics operations

are identified for each task. The characteristics are represented as a set of partial functions. This

means there is a mapping from a name for a characteristic and the associated entry for the particular

characteristic. Since all of these tasks are represented as sets, they have common operations that

3-1

ANALYSIS AND PLANNING

Determine Motivations and Objectives (T)
Analyze Environments (T)
Collect Inventory (T)
Define Approach (M)
Documentation Planning (T)
Plan System Transition (M)
Define Acceptance Criteria (M)
Define Project Procedures and Standards (M)
Identify Resources (M)
Identify Tools (M)
Test Planning (T)
Estimation (M)
Define Organizational Structure (M)
Scheduling (M)

Figure 3.1. Analysis and Planning Phase

can be performed on them. These operations are add an item to the set, delete al item from the

set, list the items in the set, and get an item from the set for modification. Here is an example

using the task Determine Motivations and Objectives as it applies problem of library population.

This task tracks all of the motivations and objectives for a project. The Z schemas were

identified in 2.2.1.3 to add, delete, get, and list all of the reasons and goals for any project. This

particular project begins with the DEFINITION schema showing reasons and goals ab empty sets.

-DEFINITION

motivations(T)D I
objectives(T) : 0

The T signifies that these are technical tasks as previously defined. As motivations and

objectives are identified for the project, the add function is applied to each of these tasks to

document this information. The resulting schema for the library problem is shown here.

o-2

DEFINITION

motivations(T): {
(moil •- (there are existing routines that implement functions that are also required in the new system)),

(mot2 . (the new system does not have sufllicient routines to be effective)),

(mot3 (the existing routines arc implemented in many prograimning languages)),

(mot4 ,- (the existing routines are gpread over many computers)),

(moi. (the existing routines are ad hoc; appear to be only home grown utilities)),

(mot6 (there is incentive to take advantage of existing routines in a new technology that generates

Ada code from tracking algorithms))
)

objectives(T) {
(objl I-. (to make additional routines available for automatic system generation)),

(obj2 i-ý (to improve software system maintainability)),

(obj3 6-. (to convert the existing library to a single language that can be used to generate Ada)),

(obj4 ý- (to port the existing software to a single system))

}

Application of the Z-defined operators to the other tasks is similar. As pointed out in (8), a

major output of the analysis part of this phase is the current status of the system. The planning

part of this phase outlined the management issues including identifying the scope of the work, the

required resources, milestones, and establishing a schedule. The phys;ri outputs of this phase are

an overall project plan, a plan for the other phases, and the existing documentation. The

renovation phase is one of the phases that follows analysis and plant

3.2 System Renovation Phase

At this phase the existing system is transformed into the target sysi, 'his transformation

follows the steps outlined in (8). There are five tasks used to accomplish these steps.

e Source Code Analysis

* Design Recovery

* Information Inspection

* Redesign

a Reimplementation

This section details these tasks using Z. This phase begins with some of the outputs from the

analysis and plenaning phase. Additional inputs required for this phase are existing standards.

3-3

These standards are items required of all projects. Considering the first two tasks together forms

reengineering as defined earlier. The items produced by these tasks include a data dictionary and

a cross reference of all files and variables. Since this task is starting with source code, the initial

issue would consider capturing a software design-level representation.

3.2.1 Background In his original definition of the model, Byrne defined some global sets

that contained items used in every phase of 'i ý project. This section reviews these definitions

since they will be used as part of the description of the schemas and operations of the tasks found

in the renovation phase. Dates, names, labels, and conditions are used extensively throughout

the project. Dates are associated with task starts and stops as well as phase starts and stops for

example. Names are assigned to personnel, files, and tasks. Labels could be associated with steps

in a procedure or items in a collection. Finally, conditions are used to signify whether or not things

can occur. To keep track of all of these, four sets have been created.

DATE 2 act of all valid dates

NAME21 set of names

LABEL -2 set of all labels

CONDITION = set of all conditions

Similar to the idea of sets to represent common items is the need to represent lists of charac-

teristic. For this Byrne identified the PROPERTY-LIST. It is used to track named properties and

and the associated values. He starts by identifying all properties and all values as sets.

PROPERTY- set of all properties

VALUE set of all property values

Once an item has been identified as having many properties that need to be tracked, a

property list can be created associating a collection of property names with a collection of property

values. Here PROP-NAME and PROP-LIST are specified and the initial value of the property list

is given.

PROP-NAME _- set of all property names

PROP-NAME C NAME

3-4

PROP-LIST: PROP-NAME -. VALUE

INITIAL.PROP-LIST = 0

For the general property list, referred to as pt below, the operations add, update, delete,

get, and list are defined. These operations can be instantiated for ally list. A A before the list

name indicates that the list changes after an operation, and a E' before the name indicates that the

operation does not cause a change in the list composition. The add, delete, and update operations

cause changes in the list, while the get and list do not cause changes. The general form of these

operations are given here.

Add - Property Updatc - Property

APROPLIST APROP..LIST

p?: PROP-.NAME p? : PROP..LIST

v?: VALUE v?: VALUE

p? 0 doam pl p? r dom pl

pl' = pi U f{p? ý- V?} pl, = pI (D {? ý- ,•?}

-Delete - Property Get -- Property

APROPLIST EPROPLIST

p?: PROP p?: PRCP.-NAME
I v! :VALUE

p? E doam pl

p" = {P?} .0pl p? E dompl

V! = pl(p?)

List - Properties

EPROPLIST

list!: P{PROPNAME x VALUE)

list = {p: PROP-.NAME; v: VALUEI pl(p) = v}

Knowing the basic definitions will aid in understanding the definitions to follow. The first

task in the renovation phase is source code analysis.

3-5

3.2.2 Sourme Code Analysis The input to this task is the existing software and outputs are

source code information and a data dictionary. To capture the source code information we assume

it is contained in one or more files having sirmilar properties. Analysis proceeds from the level

of identifying files down through identifying procedures a;:d functions, subroutines, and variables.

The reason for following this pattern is that it structures the analysis, and it follows the pattern

used by people going from the general to the specific. The collection of files is defined as

FILES ý- set of all posaible project files

Each file has a name that is a member of NAME previously identified. The specific names used for

files will be denoted FILE.INAME.

FILE..NAME 2- set of all pousible file names

FILE-NAME c 1.AMAU)

Each file has many properties associated with it. For files that are to be convErted to the new

system information that must be collected includes the location of the fi.-, the type file (e.g. input

data or binary output), the language used in the file, the names of files that use it, the names of

other files that it uses, and the contents of the file. Since this information should be collected on

each file a property list is setup to ensure complete collection of information for cach file.

FILE-PROPERTIES =- Predefuied set of all file properties

FILE-PROPERTIES C PROP-LISTS

At this point in the reengineering effort, it is necessary to track all '",i the files needed by the

project. The schema PROJECT-FILES is defined to track these items.

-- PROJECT..FILES-

fdeJist: FFJLE-NAME

file.-nf o: FILENAME - PROP-LISTS

3-6

Once the files have been identified, file contents can be analyzed. Within the files items

that are expected are procedures, functions, subroutines, and variables. Each of these also have

properties associated with them. Procedures, functions, and subroutines are similar in nature and

require tracking of information such as the item name, the functionality provided by the item,

parameters required by the item, expected results, the type item, where it is declared, and where

the item is used. Variables require tracking information such as the name of the variable, its type,

where it is declared, where it is used, and its purpose. Two new collections are identified to track

the names of these items

ROUTINES - set of all possible project procedures, functions, and subroutines

VARIABLES21 set of all possible project variables

and property lists are established to track the associated properties.

ROUTINE-PROPERTIES "- Predefined set of all routine properLies

VARIABLE-PROPERTIES- Predefined set of alD variable properties

ROUTINE.-PROPERTIES C PROP-LISTS

VARIABLE-PROPERTIES C PROP-LISTS

Finally, schemas are created to characterize the routines and variablbýs.

PROJECT-ROUTINES _--_-_

routinedist: FROUTINE-.NAME

routine.inf o: ROUTINE.NAME .@ PROP-LISTS

PRO JECTV ARIAB LES

variablelist: FVARIABLE-..NAME

variable-in Jo: VARIABLE.-NAME - PROP-LISTS

The data dictionary produced in forward engineering defines all of the data used in the

system being developed. Reengineering using the above definitions recovers all of the original data

definitions from the existing system. In addition it identifies the incidental variables, procedures,

subroutines, and functions and shows all of the relationships between these items. Once the files,

3-7

routines, and variables have been identified, it is time to proceed to the next level in reengirteering

the system: Design Recovery.

3.2.3 Design Recovery Th.z; task of the renovation phase adds domain knowledge and

external information as pointed out in the definition of design recovery. A major portion of this

task is providing the information that links the items identified in the previous task. This task may

provide additional information for the present property lists or identify additional properties that

need to be included in the lists. Also identified are more of the what is being accomplished by the

systet, that is being reengineered.

Something that surfaces at this point in the reengineering project iu how to represent the

recovered design. There are many tools that can be used snch as structure charts, transition

diagrams, and program description languages. It docs not seem that any one tool is overall better

than any other. however, choosing a tool based or the desired oatcome does help. A hypertext

typ• tool (5) that allows multiple views of the same information seems to be ideal. This would allow

viewing the 'nfor-natior. at a level of abstraction on par with the task at hand. The specific tool

that is used to capture design information is something that should be outlined in the standards of

the organization involved in the reengineering project. What is defined here is a way to track the

proaucts for a particulaý project.

IndividLal products will have names to distinguish them from other items. It is also necessary

to track their location and details. Here details refers to the composition of the product whether

they are diagrams or descriptions. Since any project can have multiple design products, a method

is needed to track items associated with a particular project. The definitions necessary to carry

out these tasks are identified below.

DESIGN..PRO DUCT ": set of all r osuible design products

PRO JECT 2 set of all possible reeisgirieering projects

DESIGN.-FRODUCT-..VAME - set of all possible design product names

PROJECTJNAME 2 set of all possible project names

DESIGN- PRODUCU'_NAME C NAME

F'?1OJECT-NAME C NAME

3-8

PROJECT.-DESIGJN

7project.name : F PROJECT

project-iifo: PROJECT - DESIGN-PRODUCT-NAME

The recovered design is now ready for passing to the next task in the renovation phase.

3.I.4 Information Inspection and Redesign In the information inspection task the details

of how to achieve the objectives are a.ddressed. The output produced is a plan for changes to the

recovered design to get the new design. This plan will probably be in the form of steps that need to

be accomplished. Since the recovered design has created artifacts similar to those used in forward

engineering, the same methods could be used to plan redevelopment of the system.

The redesign task of the renovation phase allows for adjustments to the design to aid future

maintenance of the system. Also, this is the point in the project where improvements and new

requirements could be added to the system. As pointed out in (8), there is an iterati ve relationship

between these two tasks. Changes to the design require additional planning which may result in

additional changes to the design. Therefore, a method is needed to track all of the changes that

occur during these two tasks.

The goal of this project is to evaluat- the concept of library population. Since the modules

that will be transformed are assumed to exhibit the required behavior, redesign will not play a

part in this reergineering effort. This phase of the reengineering model will no' be used for this

particular project. However, if population seems viable, this step must be reexamined.

3.2.5 Reimplementation Reimplementation is the phase that actually produces the new

system. Once progress has reached this phase, traditional forward engineering methods can continue

to be used. What is also necessary is a method to ensure that all required recovered behavior is

implemented. Part of this task is unit testing. With the tet plans that bave been developed and

the behavior that has been noted in the previous tasks, this should make verification of proper

behavior easier.

3-9

Now that the tasks have been outlined for the library population problem, they can be put

to the task at hand. The next section looks at developing the items called for in a reengineering

project.

3.3 Library Population

At this point in the research, it is necessary to obtain actual modules that need to be trans-

formed. Appendix D lists the first module selected for the transformation. It is not too large and

is used in several places in the new system. All of the source code is contained in one file, however,

the module produces several output files and has several variables and subroutines. What follows

is a description of the information recovered as a result of applying the various Z definitions.

3.3.1 Source Code Analysis This task is started by identifying the files associated with this

task. Since this task will analyze the existing source code, properties are then identified to guide

the collection of information. The first level of analysis is with the files involved. These are the

properties identified with information to be gathered about each file in the collection of files.

FILE-PROPERTIES _n {location, type, lunguage, uses-files, used-in, contents)

After the specific properties are identified, this is compared with the list of related files and produces

the following schema.

3-10

P~ROJECT.FILES-

EPSILON.PRN, KA LMAN.PL, KALM AN.PLT, P11.PRN, P22.PRN, XEST.PRJJ

XMEAS.PRN, XNOISE.PRN, X2ILDE.PRN, XTRUTH.PRNY1'EST.PRN,YMEAS.PRN

YNOISE.PRN,YTURTH.PRN,ZXNOISE.PRN, ZYNOISE.PRA',projl..for
}

file-info :

(EPSILON.PRN " (same directory, output, ASCII, N/A, N/A, data to be printed)),

(KALMAN.PYL (samne directory, output, ASCII, N/A, N/A, data to be printed)),

(KALMAN.PLT ,-. (same directory, output, ASCII, N/A, N/A, data to be printed)),

(PII.PRlN ý.4 (sane directory, output, ASCII, N/A, N/A, data to be printed)),

(P22,PRN -, (same directo'y, output, ASCII, N/A, N/A, data to be printed)),

(XEST. PRN --* (same directory, output, ASCII, N/A, N/A, data to be printed)),

(XMEAS.PRN '-. (same directory, output., ASCII, N/A, N/A, data to be printed)),

(XNO ISB.PRN o-. (sarne directory, output, ASCII, N/A, N/A., data to be printed)),

(XTILDE.PRN - (seane directory, output, ASCII, N/A, N/A, data to be printed)),

(XTRUTH.PRN ý-. (saine directory, output, ASCII, N/A, N/A, data to be printed)),

(YEST'.PYRN -. (same directory, output, ASCII, N/A, N/A, data to be printed)),

(YMEAS.PRN .-- (same directory, output, ASCII, N/A, N/A, data to be printed)),

(YNOISE.IPHN i-. (msane directory, output, ASCII, N/A, N/A, data to be printed)),

(YTURTHPRN i-+ (sane directory, output, ASCII, N/A, N/A, data to be printed)),

(ZXNOISE.PRN ,-ý (sane directory, output, ASCII, N/A, N/A, data to be printed)),

(ZYNOISE.PRN ý-4 (same directory, output, ASCII, N/A, N/A, data to be printed)),

(proj1.jor ,-. (same directory, main routine, FORTRAN, N/A, N/A, subroutines and variables))

I

Source code analysis continues by looking into the various files. In this instance, the only file that

needs to be examined is projl.for since all of the other files are produced by executing this file.

Thia portion of the analysis is looking for procedures, functions, subroutines, and variables. Again,

the first step is defining the properties that need to be collected for these items. Something that

comes up at this point is the hierarchical manner of declaring proccdures and variables. They can

be declared in one place and used in another. Usage can be at a different level than the declaration.

This requires the usage level to also be captured. To accomplish this, usage will be represented as

file/procedure/... /procedure until the proper level is reached. The first level is represented by the

file in which usage occurs. Procedures or subroutines are added for each corresponding level. In

defining this information, scoping rules are necessary. The procedure used for scoping is to identify

3-11

routines and variables that are one level down from the routine of interest. The following properties

are identified for collection.

ROUT JNE-.PROPERTMI G f{functioni, parameters, results, type, declared-in, usecin)

VARIABLE -FROFERTIES2 (type, deelxred-in, used-in, purpose)

Collecting the variable and routine information results in the following schemas.

PRO JECTJkOUTINES

romie-davt:{main, noise, Intx..ul, inaxadd, mtxsub, nitxzro, rntxtrp, mtxiniv, iderntx)

routine-injo: f

(inain -(kalinan filter implementaticn,N/A,creates files,procedure,/proj 1 for.N/A)),

(ntoiae - (generates gauhlian noise,(xmnear, variance, rndznn, n),

matrix initiAlized with noisc,subroutlne,/proj 1.for,/proj I fr/in)),

(mixmul -. (matrix mnultiplication, (a,btc,nI ,n2 n3), ab~subroutlno,/paojl .for,/proj 1 for/mnain)),

(mtxaddi-. (matrix addition, (A,b,c,ni ,n2)a&+b,subroutlne,/p~rojl .for,/projl .for/ninain)),

(mlxvub ý- (matrix subtraction, (a,b,c,n I n2),a- b,subroutlne, /projl .for, /proj 1 for/main)),

(mizzro oý(matrix zero, (a,nl ,n2), &,subroutine, /projl .for,/projl .for/maln)),

(mixtrp - (matrix transpose, (a,b,ln,n2), b,subrou tine, /proj I for,/projl1 for/miain)),

(mtxinu '- (matrix inverse, (a,alnv,b,kc,is), (ainv,ls) ,subroutine,/ proj i.foir,/p~roj 1 for/mnaini)),

(ideinta: (identity matrix, &an) ,subroutine, /projlfor,/proj1.for/main))

L

34*2

PRO JECT-VARIAI3LES

varsuble..list :
K, C, 11, 12,. IS, IOI'T, NOR, NI'T, X. Y. WX, WY, XHIATN, XUIATOLD,

VX, VY, Z, XIIA', ZIIAT, NI), P. F., FT, R., PN, TE~MPI, TIIMP2, Q. HI, S,

HT, SI, W, WT, XTILDE. XTILDET, EPSIL~ON, Craph, PI, Namneg

(K ". (Intaget, /proji.for/maln, Iproji-for/raaln, loop counoir)),

(C (Integer, /projl.for/maln, /prol'-far/rnain, temple reisslr)),
(11 - (Integer, /projl.for/traln, /projl-for/rualn, Geed)),
(12 ý. (Integer, jprojl.for/malr, /projl.for/maln, seed)),
(IS - (lnotgfr, jprojl-lorlmaln. 1proj1 for/main, matrix singular flat)),
(lOPT -(Integer. /proji.for/maian, /proJl.for/ru&1v, purp)),

(NOR s-(Integer, /pro~l .for/maln, Jproj 1301 /mInla purp)),

(NPT (Inttegor, /projl.for/ma4Ls, /projI.for/rsirln, pssrp)),
(X m- (array of reals, /proji.for/wain, /proll.for/maln, purp)),

(Y m- (array of reals, /prsjllfatr/nss.n, /projilfor/malrr, purp)).
(WX .- (array of reals. /proji.for/eitain, /projl.foijrnalu, purp)),

(WY s (&rray of reals6, /projllforjmaln, /projllfor/malsin purp)),
(XIIATN '-(array of reals, /prnjl.for/maln, /proji.for/maln, purp)),

(XIIATOL 4) e- (array of teals, /proJI.for/tnaln1, /PVoJI.for/m&Is1, PUrP)),
(VX - (array oftreals, jprojl.for ma.1n, / proj l.fou /main. purp)),
(VY - (array of reals, /proji-fori/mala, /praj l.for/nraain, purp)),
(Z ý (armay of reals, Iproll.forlnraln, /projl-for/main, purp)),
(XIZAT w. (array of reals, lprojl.forjmalIn, /projl.for/main, prsrp)),
(ZIJAT ,- (array of real&, Jpto) l,for/maln, /proll.for/rrusln, purp)),

(NU (array of real&, 1projI.for/manal, /projl.for/maln, purp)),
(P s. (array of reals, /proll.for/mn.ao /proji.for/ranes, prsrp)),

(F .- (array of reals, /proJl-for/rnaln, /projl.for/rauol, purp)),

(FT r-(array of reals, /projl.for/maln, /proji.for/ma~rr, purp)),
(R s- (array of re&]&, /proji.for/maln. jprrsjl.for/malo, purp)),

(PN - (array of reeal$, IproJl.for/r&naln /projl-for/nraln1, porp)),

(TEMPI ý (array of reals, /projl.Nfo/maln, iprojI.for/maln, temporary rnalrix)),

(r51jP2 - (array of reals, /projl.for/rmalr, iprojl.for/ma~lr, temporary ruasrlx)),
(Q s- (array of reals, IproJI-for/maisl, /projl.for/malrr purp)).

(H x- (array of rea.ls, /proji.for/maln, /ProJlI.forj main. purp)),
(S - (array of reals, /proJl-for/maln, /projl.for/maln, purp)),

(HiT - (array of reals, Iprojl.for/knailn, /projl.for/maln, purp)),
(SI - (array of reals. /projl.for/rnals, /Proll.for/maln, purp)).
(W 0- (array Of reals. /ProJl.lor/enaln, lprojl.for/maLn, purp)).
(WI'.- (array of reals, /proJl.for/rna~n. /proji.for/maln, purp)),
(XTILflE .- (array of reals, /proi! for/rbIn jproJl.for/main, purp)),
(XTILOS0T .. (array of reals, /projl.for/snaln, /prejl-forfrnaln, purp)),
(EPSILON - (array of reals, /projl~for/maln, /projl.for/rnala. pssrp)),

(Graphs -. (array of reals, /projl.fsr/an.I.., /projl.for/malns, purp)),
(Pl r- (array of reals, /prssjl.f..r,'malo, /Proji-forjmabn, prrrp)),
(Noneg p (array of cl~riarcirr, /prc ll.for/tnalri. /projl for/mnaln. purp))

3.3.2 Deaign Recoveryg Reaching the design recovery task, it is time to provide links between

the items identified in the previous task. The first adjustment to the PRO JECT-DJ.ESIGN scheina

is to give a name to the project. The nature library population brings up another problem with

naming. It is possible to refer to the il'brary as the project, or to refer to the final system as the

3.13

project, or to the individual modules as projects. Naming the modules as projects is chosen. The

present system is detailed to the extent of outlining the modules needed to make the system fully

functional. Initial additions to the system are most beneficial in these areas. In keeping with this

notion, it is reasonable to assume that. conversion of individual modules will need to be tracked.

Therefore, modules will be considered as projects and given names. This name will be used to

track the module and its associated design products. Referring to company policies and standards

at this point, a decision is made about the necessary collection of design documents. Since there

are no standards presently in place for accomplishing the task at hand, design documents will be

created as needed.

The first pass through the program divides it into three parts. The first section initializes

variables and opens/creates all of the output files. Section two is a loop that does a number of

calculations based on the number of samples selected. The final section closes all of the output

files. This shows that all of the work is acromplished in the second portion of the program. The

comments in the middle of the program depict this section as sequence of matrix operations. These

operations appear to be divided into steps of four to eight statements. This is about the best that

can be gleaned from examining the code. This is a textual description of the program. It will be

saved in an overview. The information gathered thus far is enough to translate the module into

the new system.

In this task kalmanafiltcr has been added to Lhe set of reenginering projects. The only design

product presently available is the textual description of the module.

PROJECT-LJESIGN

project-name• {kalmauLfilter)

project-injo : {kalmamxfiiter - kahlan..lter.text.overview)}

3.3.8 Information Inspection and Redesign Based on the information recovered in the pre-

vious task, the plan developed here during the information inspection is as follows.

1. Develop array objects

2. Develop matrix objects

3. Develop matrix operations

4. Develop a shell with variable declarations

3-14

5. Incorporate variable initialization within the shell

6. Incorporate the second portion of the module by adding one collection of steps at a time

7. Incorporate file output

This set of steps is sent to the next task in the renovation phase. The redesign task will not be

used since the objective of this research is to capture the original functionality of the modules.

3.3.4 Reimplementation The result of applying this task is a new representation of the

existing system. The actual application of this task is discussed in detail in the next chapter.

3-.4 Summary

The schemas defined in this chapter can be applied to any project that desires to populate a

software library. The chapter that follows discusses the use of these schemas in an actual project.

3-15

IV. hnplementation

4.1 Introduction

As discussed in the previous chaptper, a two-step approach was used to solve the problem. Step

one used Byrne's model to plan the project and step two was to implement the plan. Th.s chapter

discusses the implementation which essentially followed the steps as outlined in the information

inspection task of Ilie last chapter. However, there was the need to do other preliminary research.

Initial analysis cAt'd for a study of APTAS to get an overall view of the system that needed its

library populated. Al•so, a survey of existing code was conducted to select suitable modules for the

test. This chapter covers tne prelimi 'a.ries aad then details the renovation.

4.2 Preliminaries

A quick look through the available modules showed that FORTRAN was the primary language

used. This Jed to a study of FORTRAN and its data types. Following this study was a look at CIDI.

and its data structures. The reasoi: for studying CIDL was that this is the language used in APTAS.

Also, it was necessary to compare the data types available in the two languages. Following the study

of the languages, APTAS was surveyed to learn how it was constructed. Its primary components

consisted of a knowledge base and a collection of library routines called primitives. The structure

of APTAS is represented in App'?Y:-.ix A. The top level presents a tracking system to be developed.

Questions are presented t• the user and the answers determine what additional levels are added

to the developing sPructure. E.ach new level adds new questions and each new answer may add

new levels. This process continues until there is sufficient detail for the knowledge base to select

between system primitives.

The research started with gathering samples of moduies from existing code that needed to

be put into the new system and gathering samples of existing primitives. Appendix D presents the

module that was chosen for transformation to the new system. It is a FORTRAN implementation

of a kalman filter as outlined in (4). This module was chosen because it is used in several locations

in the APTAS structure. The TRACK.DATABASE presented in Appendix B is representative of

a primitive modude in the APTAS system. This particular module was chosen to show the wide

4-1

variety of information that must be represented and the many files that are used in maintaining

the :iystem knowledge base.

After analyzing the samples and the APTAS structure, the approach to transform the FOR-

TRAN module was further divided as follows: implement the filter in CIDL as a stand-alone module;

insert the new module into the knowledge base at the top level; arid move the module to its proper

place in the hierarchy. This approach was chosen for several reasons. The module presently existed

as a stand-alone module. So implementing it in this manner first would allow testing and verifica-

tion of operation apart from the APTAS system. This would ensure the CIDL representation was

correct and would enhance understanding of CIDL syntax and semantics. Inserting the module at

the top level would allow easier integration testing. Since all of the intermediate modules are not in

place, having this module at the top level will make it much easier to ensure it is invoked. Moving

the module to its final level will not require additional testing since integration and functionality

have been previously checked, It is a matter of locating and replacing the corresponding module

name in the hierarchy. After t iese preliminaries, research continued with the steps outlined in the

previous chapter.

4.3 Source Code Analysis

This phase started with an examination of the files that were used, The source code wZ.s

contained in a single file. However, examination of the code showed that 16 other files were created

during execution. Additionally, tie file coiitained ohe subroutiie to generate raedom numbers and

seven subroutines for matrix operations. FORTRAN library routine that were used in the pogram

were Sin, Cos, and Ran. All variables used in the program were single integers, one-dimensional

arrays of reals, or two-dimensional arrays of reals. The relationship between the sitbroutines and

the main program was that all information exchange was accomplished by passing variables to the

subroutines so they could be modified.

As part of the source code analysis a search of the APTAS library was performed to find

routines that could be reused in the new module. The math module provided Sin, Cos, and

lI.andom functions. CIDL did not directly implement arrays, however, there was an existing array

module that provided one-dimensional array operations and a matrix module tham provided two-

4-2

dimensional array operations. These modules did not provide all of the required functionality,

but they served as good models and were modified and reused. A matrixop module was also

available, but it only implemented multiplication and transposition. The following list shows all of

the functionality the modules were required to provide.

Math__ Array Matrix Matrixop

sin assign assign add

cos I index index subtract

random print print multiply

initialize initialize inverse (limited to 2 x 2)

create create transpose

4.4 Design Recovery

An important part of this step is to choose a representation that allows easy transition into

the new system and representation of all the recovered information. Since the new system language

is CIDL it was also chosen to represent the recovered design and facilitate translation into the new

system. The design representation of the existing system was not very complex. Its structure can

be described as follows.

declare variables
open files
initialize variables
loop

do filter calculations
update variables
write values to files

end loop
close files

The variable initializations were sequences of FOR'!'RAN statements. The filter calculations were

sequenceF of statements along with calls to subroutines and library functions. A suitable CIDL

struture to represent the program turned out to be the let statement. Its structure is given here.

4-3

let
declare variables

in
open files
initialize variables
loop

do filter calculations
update variables
write values to files

end loop
close files

end let

Here also the program would consist of a sequence of statements, procedure calls, and library

function calls.

4.5 Information Inspection

The plan developed in this phase to do the actual transformation was straight forward. It

would be a phased conversion beginning with the declaration of variables in the new implementation.

The next phase would be implementation of the initializations. Once these had been carried out,

the sequence would continue with implementing statements, then library function calls, procedure

calls, and finally file output. Once file output was complete, comparisons between the original

functionality and the Pew implementation would begin. This would mark the end of converting the

selected module to CIDL.

The next phase of the conversion, as discussed previously, would be to put the new module

in the knowledge base at the top level so the interfacing could be worked out. This too would need

to be a phased task. Beginning at the top level, it would be necessary to insert a new menu option

to allow testing of a development module. This involved creating the option, setting necessary

variables to deactivate the defaults, and activating levels that implemented the new functionality.

Also, the structure of the knowladge base makes it essential that the new module be represented

in the following files.

global.desc describing the new type and its parameters

global.gsdl-t describing the graphical representation of the new type

4-4

global.gsdl-I describing the displayable cormponents

global.synth as a template for generating CIDL

global.form representing the user interface

These items would be developed at this point in the transformation. After this interfacing is

completed, testing is performed to ensuie proper operation of the new module and its-ir'eraction

with the knowledge base. The last phase would simply iequire renaming the module level as

dictated by the APTAS structure. This would remove the module from the test status and position

it as a normal primitive. Following this plan, the actual redesign can begin.

4.6 Redesign

The initial decisio0I sequence did not require use of the redesign task in system renovation.

Since the modules were being used in other programs where they were assumed to function correctly,

the idea was to duplicate this functionality without redesign. During the actual reirnplementation,

however, it became necessary to readdress this decision. As discussed in (8), the relationship

between this task and the next is iterative. This proved to be the case in this project. Two

particular problems are discussed here.

The transcendental functions used from the FORTRAN library were passed degrees for the

calculation. Passing these same numbers to the CIDL functions resulted in errors of several orders

of magnitude. This was not discovered until the file output was implemented. To correct this error

required a change in the baltic design to convert these numbers to radiaAs as required by the CIDL

library.

The matrix inverse subroutine in the original module was implemented using the goto state-

ment available in FORTRAN. Since CIDL did not have a similar statement, tlhis procedure had

to be completely redesigned. Since this version of the filter inverts only 2x2 matrices, a limited

procedure was easily developed. Extending this procedure to accommodate 3U3 matrices is not

very hard. However, extending the matrix inverse operation for a general nxn matrix will require

going to a block structured implementation of an algorithm such as the Gauss-Jordan elimination

method (14).

4-5

4.7 Reimplementation

The reimplementation followed the plan developed in the information inspection task. Varia-

tions in the plan were due to discoveries during the implementation. Two of the problems encoun-

tered were discussed in the redesign task since they required a new look at the original redesign

decision. Other issues that did not have such a large impact are discussed here as the reimplemen-

tation is outlined.

Declaring integer and real variables turned out to be straight forward. Declaring and ini-

tializing arrays required modifying the available modules as described previously to provide the

needed functionality. Otce the array modules were in place and tested, declaring and initializing

arrays was easily accomplished. The matrix module built upon the array module and led to further

modifications. Finally, the matrixop module was developed and tested.

As the statements were being converted, several undeclared variables were found and had to

be decla.'ed. FORTRAN allows some variables to be declared at use time and this is not allowed

in CIDL. Another problem that developed was with the names chosen for the variables in the

original program. They turned out to be reserved words in CIDL and had to be renamed. Some of

the original variable tyr. es had to changed later also since CIDL had much stronger type checking

(integer to real). Translation proceeded by taking FORTRAN statements and mapping them to

statements in CIDL. There was continuous testing to ensure functionality was retained.

To complete the CIDL implementation of the module, a complementary test had to be devel-

oped. The fi ial numbers produced by the CIDL implementation were not close enough to the figures

produced by the original program to verify functionality. It was suspected that the differences were

due to the random number generator differences. FORTRAN allowed setting the seed of the gen-

erator and CIDL did not. A test was developed by replacing the CIDL random number generator

with the sequence of numbers preduced by the FORTRAN program. Using these numbers, the two

programs had identical output. This marked the end of converting the chosen FORTRAN module

to a stand-alone module in CIDL. Reimplementation moved to the task of integrating the module

into the knowledge base.

4-6

4.8 Summary

APTAS presently contains the overall structure for tracking systems, however, Appendix B

lists the modules that are presently still required to completely implement the system. Addition of

these modules will not require changing the tructure of the present system. The method outlined

in this and the previous chapter can be used to put additional modules in the knowledge base.

Adding additional capability will modify the structure and will require more changes. The biggest

decision to be made will be determining the proper location in the existing hierai-chy.

4-7

V. Conclusion and Recommendations

5.1 Conclusion

Using design recovery as a means to populate a software library is feasible especially in the

case where the structure of the library is in place. This allows the focus to be on obtaining modules

with specific functirnality. Even if the modules cannot be used as is, they can provide guidance

for developing new modules during the redesign task of the renovation phase.

The decision to skip the redesign step proved unwise. The model showed that the redesign

and reimplementation steps were iterative in nature. Once reimplementation started, problems

were encountered that required the redesign step.

The original problem statement in Section 1.3 outlined the four areas that needed to be studied

in order to accomplish the library population. The internal formats of the APTAS knowledge base

are presented in Appendix A. Characterizing the modules that need to be placed into the library

must be accomplished for each module. Following the procedures in Sections 3.2.2 and 3.2.3 will

capture the module behavior. A sample plan for mapping the recovered design into the new format

is presented in Section 3.3.3. This plan must be customized for each new module.

5.2 Recommendations

The recommendations presented here are divided into areas that need to be addressed in r

detail. The ordering of the recommendations is arbitrary.

5.2.1 The Knowledge Base The files that make up the knowledge base have grammars

associated with each of them. They are also common to all users of the system. Presently there

are no tools specifically designed to maintain these files. Corruption of these files will lea.d to

system wide problems. Two suggestions for helping with this problem are developing a forms based

interface for the files and developing a small, stand-alone testbed for new modules. The interface

could be made to maintain the grammar for the global.desc, global.form, and other files in the

knowledge base limiting the possibility of corrupting these files.

The APTAS Software User's Manual (13) also contains a communication network model as

another example of executable specification. It is a much smaller system, but it uses all of the

5-1

knowledge base component types used in the APTAS system. A similar model would make an

excellent testbed for new modules for the APTAS system. This would allow easier testing and

integration into the knowledge base.

The items described would aid modifications to the system as it is presently defined. If the

structure needs to be changed, additional considerations may be necessary.

5.2.2 Selecting Modules The primitives used in the APTAS system cain best be described

as communicating sequential processes as defined n (11). They do their processing on information

sent by other processes. After the computation, results are sent back to the calling process. This

description hints at the best type of modules to sele.ct for the knowledge base. Best here refers to

structure. Modules that have all of their functionality hidden within a procedure are ideal. All

access to the internal structures should be through procedure calls, and the procedures must he

able to retain their values across calls. For modules that do not fit this structure, additional work

is required to decide which parts of the module aLre implementing the required behavior and which

parts are not needed. The worst type modules would bc those that perform interwoven, dissimilar

operations.

This idea is also beneficial in the development of candidate modules for other systems. Fol-

lowing the structure outlined above would allow easier reuse of the module in the APTAS system.

It sill also promote easier maintenance on the target system.

5.2.3 Translating Modules Due to the large number of files required to complete the system

knowledge base, automation of the process se'rms to be a must. One problem that may face

automating the process will be the number of language!, used in candidate modules. Each language

will require developing a translator. If there are many modules in a given language, this may be

beneficial. Since the primitives that are required may have small sizes, it may be easier to code in

CIDL using the selected modules as guides than to make translators to convert to CIDL.

5-2

Appendix A. Module Characteristics

Populating the knowledge base of the APTAS system requires manipulating six files. Five of

the files contain a portion of the information characterizing the description of a module. The final

file is the actual CIDL implementation of the functionality of the module. This appendix presents

the TRACK1DATABASE module as it appears in the five files that describe the module. It also

describes the purpose of the file and the information it contains.

A.1 Description

The description of the TRACK-DATABASE is given in the global.desc file. It acts as the help

file for the user of the system. It is accessed from the describe-type function of the GDE editor.

This file describes the types that are available to the system and lists all the parameters that are

contained in an instantiation of a particular type along with their function, and the interface.

TRACK DATABASE:
This module is responsible for the storage,
management and retrieval of all track data.
PARAMETERS TO SPECIFY:

PLATFORM : platforatype
(ground or airborne)

TRACKBUFFERSIZE : int
(range : 1 to 50)

TRACK.HISTORYSIZE : int
(range : 2 to 20)

PLATFORMPOSBUFFERSIZE : int
(range : 2 to 20)

RISSIONMBUFFER.SIZE : int
(range : 1 to 10)

REQUIRED.APPLICATIONJIEI•RY : int
(This parameter value is
calculated during synthesis.
A value given to it in the
graphical editor rill be
overwritten by the synthesis
engine. It's visibility in
the graphical editor is merely
to provide information after

synthesis.)
RAM.MEMOR.Y : int

(hov much is available for
the track database)

A

A-I

A.2 ICON Re.presentation

This portion cf the TRACK-DATABASE is taken from the global.gsdl-t file. It describes how

objects are to be represented graphically and how they should be positioned in the GDE editor.

Also shown is the information for a relation.

TABLE TRACKER.DOMAIN

MODULE : TYPE
TRACK-DATABASE -> ICON - MED.BLUERECT

LABEL - TOP BOTH

DEFAULT-POSITION - CENTER
CONTENTS a

MODULE -> ICON w SM..RECT
-- LABEL - CENTER NAME
DEFAULT.POSITION u CENTER

IN.PORT -> ICON - MINI.CIRCLE

LABEL - LEFT NAME
DEFAULT.POSITION w LEFT

OUT.PORT -> ICON - MINI.CIRCLE
LABEL - RIGHT NAME
DEFAULT-POSITION -RIGT

DISPLAY RELATIONS;

ASYNC RELATION
WIDTH - 0
COLOR - "Magenta"
FROM.END a PLAIN
TO-END - ARROW
VALID.PAIRS - (MODULEMODULE)
EXTRAARG;

END

A-2

A.3 Comnponents

The global .gsdl-l file describes displayable components of a particular module. it is accessed

by the ODE editor.

TRACKER-.DOMAIN

TRACX..DATABASE :MODULE
DECLARE

PLATFORM :PLATFORMTYPE;
TRACK..DUFFER..SIZE INT;
TR.ACK-HISTORY-SIZE INT;
PLATFORILPOS..DUPFER-.SIZE : IT;
MISSION-BUFFEA..SIZE : INT
BEQUIRED-.PPLICATION-.MEIRY : IT;
RAM..MEXORY : IT

END

A.4 Syntheis:

In the global.synth file all of the modules are represented as CIDL templates identifying

parameters of the module type. This information is used by the synthesis engine, to generate

CIDL.

(detyar *priu-moduleas nil)
(aetq *prim-modules*

1C (-CDL ((-PA (platform)
(typeunion ((ypeenuxlit $ground)

(typeenumlit $airborne)))
(expvoid))

(-PA (track..buffer..size) jut (expvoid))
(-PA (track-hi.1.ory-size) mnt (orpvoid))
(-PA (platform-.pos-.buffer-ize) mnt (uxpvoid))
(-PA (misaion..buifer-c.ize) mnt (expvoid))
(-PA (required-application-menory) int (expvoid))
(-PA (ran-viemory) int (expvoid))

(DECLPARAM TRACX..DATABASE-CREATE
0)
TRACK-.DATABASE (EXPSTRUCT NIL))

A-3

A.5 Selection

The most important file to be modified is global.form. It contains form information that is

presented to the system user and module selection criteria. The lorm contains the questions that

guide the user through the refinement of the system. Based on user input, different combinations

of modules are combined. Updating this file requires locating a position in the hierarchy for the

module and developing the selection criteria.

LEVELS

/TRACKING
"Tracker Boundary Conditions" TRUE

NOT.DEFAULT EQ NONSENSE I NOT.DEFAULT NE "true" "Default Tracker?"
STACK

"true" VARIABLE.SET(UEFAULT.TRACKER, "true")
ACTIVATE.LEVEL(/TRACKINQ/DEFAULT,.TI.ACKER)
ACTIVATE.LEVEL (/TRACKING/DEFAULTTRACKXER/TRACK-DATAEASE)
ACTIVATE.LEVEL (/TRACKING/DEFAULT.TRACKER/SCAN.TO.TRACK.CORRELATION)
ACTIVATE.LEVEL (/TRACKIMO/DEFAULT.TRACKER/PRESENTATIONYPROCESS)

"false" VARIABLESET(DEFAULT.TRACKER, ".alse")
DEACTIVATE.LEVEL(/TRACKING/DEFAULTTRACXER)
DEACTIVATELEVEL(/TRACKIN0/DEFAULTTRACKER/TRACX.DATABASE)
DEACTIVATE-LEVEL (/TRACKING/DEFAULT.TRACKER/SCAN..TO_.TPACK.CCRRELATION)
DEACTIVATE-LEVEL (/TRACKING/DEFAULTTRACKER/PESENTATIOPROCESS)

0;

"Test Iterations Count"
NUKERIC [1. 100)

N1, 100) SAVEVALUE(TEST.ITERATIONS)
30;

/TRACKING/DEFAULTTRACKER
"Default Tracker Top-Level" FALSE

"No questions, this is a default module."
CHECKLIST

END;

/TRACKING/DEFAULTTRACKER/TRACK-.DATADASE
"Default Tracker Database" FALSE

"No questions, this is a default module."
CHECKLIST

END

A-4

NODULES

"TRLCICER-ENVXRONMENT"
"Sensor-.Data" "SENSOR-MODEL"

{"ITERATIUNS" a TEST.ITERATIONS;
"PERTURBATION-FACTOR" - 0.02,
"TARGET-.SPECS" - "'[[COMPUTE-FUN u -DEFAULT_.EQI

ARGS " [0.089, 0.009; 1.78;
1.16; 92.31; 8.23)];

[COMPUTE-FUhN - DEFAULT-EQ2
ARGS - [0.191; 0.083: 2.46;

2.09; 81.01; -7.23)])";
"SENSOR" w "ISENSOR.TYPE"})

de±ault..ti-cker EQ 1"truel
"Tracker" "-TAROET-.TRACXER"'

default..trackdar ME "true"
"Trackiar" "NEW-.TRACKCER"

"Output" "OUTPUT-DISPLAY"
{"TABLE..DATA..FILE"

"dgata..iles/default..tracker-.table..data.txt";
"W-DjATA-.FILE~' a

"data.f iles/default..tracker-..ap-.data. tit";
"ITERATIONS" a TEST..ITERATIONS}

REL("Senaor..Scan-jreae..To-T'racker", "Async",.
"Sesnor..Data. acan..lrarnout", "Tracker. orazi..rame-.in",
""GenericScanFraive"l)

REL ("Oporator-.Query-.to .Trackor". "Asymc"l,
"Output. query-out", "Tricker. u~sr..qusryj"l.

"* "0nericQuary")
REL(C"Tracker-.Data-.to..Display", "Asyac"l,

"Tracker. display..data..out ". "Output .reply-in",
- "GensricTrackData")

A-5

"TARGET-.TRACKCER"
"TDB" "TRACK-DATAB3ASE"

("RAM-MEMORY" *RANJIENORY;

"REQUIRED..APPLICATION.)&NORY" w 0;,
"MISSIaL-BUFFER..SIzE" - 5;
"PLATFORMt.P0S-BUPFEP.SIZE" - 8;
"TRACK-HISTORY..SIZE" *10,

"TRACK -BUFFER..SIZE" *NIUM-OF-T1ARGETS;

"PLATFORM" w '"-FLATFORLTYPE"})

"STC11 "SCAN..TO..TRACX-CORAELATION"
{"TERRINATED..TEHT..TRACK-SAVE..LIMIT'1 , 5;

"TERMINATED..REG-.ThACX..SAVE..LIMIT" 20;
"TENTATIVE..TO.REUULAR..THRESHOLD" * 4;
"TERMINATION-.THRESHOLDS" m-1"[4. 2]"1;
"INITIAL..OATE..DELTAS" 0 `"[5.0; 5.0)";
"REDUCE-D-DELTA-FACTORS" w ~"[0.8, 0.8]";
"INCREASED..DELTA-YACTURS" - "'12.0; 2.0)";
"DECOYS" w "'FALSE";
"FALSE..ALARJLPROBABILITY" a 0.10;
"TARGET..TRAJECTURY" =-1"NAMEUVERIUO"1;
"TARaST-.DENSITY'sw" MDA"
"TAROET-.PRDBABILITY..UF.DETECTION' a 0,91
"PLATFORM" w -11PLATFDRM-.TYPE".
"DATABASE" - "TD0B1)

"1pp " "PRESENTATION-P'ROCESS"
{"DATAB&SE" a '"TDH")

DECL C User-.Query..In", "In-.Port", 1"")
DECL"Display-.Data..Out", "Out..Prt",""

REL ("STC..Database..TDD.Paxaaemter-Module", "Parameter-Module",
"5rC. database", "TD81". ""1)

REL ("PF..Dat abaae..TDILPaz-aaete._Module", "Parametar..Module".
"PP. database", "TDIB", "")

REL("Process..Scan..Frame..In", "Apply-.Function",
"Scanj.rameIn", "aTc. ProceassScan..Fraam"1, "GenaericfcanFrame")

REL("Proceas-.User..Query-.In" * "Apply-.Function".
"Ua*er.Query-.In", "PP. Oot-.Datc..For..Display", "Generic~uery")

U1L("Forward-Display-.Data". "ForvardLFunction-Result",
"PP. Got._Data..For..Display", "Display..Dat^-.Out",
"UunericTrackData"l)

A-6

Appendix B. System Structure and Population

This appendix shows the structure of the global.form file as it represents the structure of the

system. Structure is represented similar to a file system directory. /TRACKING is the top level of

the structure. Anything represented as /TRACKING /SOM ENAME would be at the second level of

the structure and /TRACKING/SOMENAME/OTHERNAME is at the third level. The LEVELS

section of this file represents the hierarchy of enabling forms, and the MODULES section captures

the parameters and values. At the bottomi of the MOD ULES section are the lowest level primnitives.

The primitives without parameters, marked by ';', have not presently been implemented.

LEVELS
/TRACKfING

/TRACKING/ZLaa..SCAN-SIGNAL..PROCESSIUU.JNTERACTION
/TRACKING/N-SCA1LflEED.IGMAJ.-PROCEssINO-.INTERACTION
/TRA~CK INO-10-SCAN TiPLATE-S IGNAL..PRCESS ING.. INTERACTION
/TRACKYNU/HICIUVAVE.R.ADAR-SENSOR
/TJLACKI3U/X-BAIDj-.fl.YRF-RADAR..SENSOR
/TRACKING/PLATFORM
/TUACKING/PROCESSOR
/TRACXINU,'DEFAULT-TR.ACKER

/TRACICING/DEFAULT-TRACKER/TRACK-DATAJJASE
ITRACKI MU/DElVAILT -TRACKER/ SCAiLTO..TRACK -CORRELATION
/TRACKING/DEFAULT-TRACKEPR/ESENTATION-PRtOcESS

/1TRACKIWO/CLUTEP.
/'TRACXING1'CLV.TRr/ESrTyIIED
/ThACKING/^,LUTTR/EGT_.PRED/DYN -MoD/ TLyL_1USACC
/TRACXIMG/CLUTTER/iSSUC
/TRACXIN0/CLUTTER/As)!UO:/HYP-SELLCT...O-SCAN-s.1CO0RD
/TRACXING/CLUTTER/Asý.;:c/HIYP-ELECT-0OSCAN-CaORD
/TRACKINU/CLUM R/AS3UC/HYP-SELECT-N-SCAN-UNCOCiRD
/TRACKLING/Cl~t)TrTR/ASSuC/HYP-SE~LECT-NSCAN_.CooRD
/TRACKING/CLLTrTER/PRO-DEH

/TRACKINO/'3EISDR
/TR.ACKING/SENSOR/NCI.5E
/TRLACKING/SENSOR/NCISE/DG-.CLUTTER
/TRACXING/EENSOR/NOISE/PG..CLUTTER
/TRACJCING/SENSOR/NOISE/DA..CLUTTER
/TRACK TNG/SENSOR/NUISE/PA-.CLUTTER
/TRACKINIG/SENSOR/NCISE/SEA
/TRACKING/SENSOR/NDISE/JAMouNG

/TRACKING/SINGLE..CSO
/TRACXING/SLINGLE..CSO/TARGET-CHARS
/TR&CIQNG/BINGLE..CSO/E3T.PIU D
/TRACKING/S INGLE-..CSO/EST..PRED/DYN..MOb.'VEL-PLUS-ACC
/TR.ACKING/SINGELE..CSO/ASSOC
/TRACIING/S'INGLE-CSO/ASSOC/HYP-SELECTo0SCAN..UNCOORD
/TRACKING/SINULECSO/ASSOC/HYP-.SELEC-T-0-.SCAN..CfORD

RB-I

/TRACKING/SINGLE...CSO/ASSOC/HYP..SELECT..N.SCA-M.UICOORD
/TRA CXING/SINGLE..CSO/ASSOC/HYP-SELECT-JLSCAN-COORD
/TRACEING/SINGLE-GSO/PHO-DEM

/TRACKING/GROUPS
/TRACXING/OROUPS/EST..PRED
/TRACXING/GROUPS/F~rT-yiRED/DYN-yOD/VSL..PLUS-ACC
/TIIACXIUG/G~aU~jS/ASSOC
/TRACXING/GROUPS/ASSOC/HYPSELECT.0-SCAN..UXCOORD
/TRACKING/GROUPS/ASSOC/HYP..SELECT-O..SCAN-COORD
/TPRACXING/GRaWS/ASSOC/HYP-.SELECT-N-.SCAN-.UNCOORD
/TRAcKIMO/GROUPS/ASSOC/HYP-SELECT-HSCAN-COORD
/TRACGiUG/aROUPS/PRO-DEN

/TRACXING/FORKATIONS
/TRACKIMU/FOIWATIOMS/EST..PIED
/TRACXING/FORKATIONS/EST-PRED/DYN-IOD/VEL-PLUS-kCC
/TRACKZNG/FCRMATIONS/ASSOC
/TftACXIVG/FOPIMATI0NH/PRO..DEM

MODULES

"TRACXER..ENVIRONMENT"
"Sonsor_.Data"

"SENS OR.MODEL"
"Tracker"

"TARGET-TRACKER"
"Tracker"

"NEV..TRACKER"
"Output"

"OUTPUT-.DISPLAY"

"TARGET-3RACXER"
"ITDB"l

".TRACK..-DATABASE"
"1STC"1

"SCAN..TO..yRACX..CORRELATION"

"PRESENTATION-.PRUCESS"

"NEW-,TRACKER"
"Signa1..Processing"

"ZERO-SCAN-SIO.PRCC"
"N-.SCAN..REED..SIG-PROC"I
"N-~SCAU.TTEMPLATE-..ATCHING-.SIO..PROC"I

"Process..Sing1o..Obj octa"
"SINGLE-.OBJECTS"

"Proceaa..Singl..Obj ectu..azd-CSOs"I
"SINGLE..OBJECTS"

"Process-Groups"
"GROUPS"

"Process-Formations"
"FORMATIONS"

"Proceass-lutter"
"11CI.TTE.ftj)ISCRETES"

"SINGL~E_.OB.TErrS"

B-2

"Eat imation-.Predict ion"
"SJ'IGLE..ESTIHATION-PREDICTIONI

"Association"
"SINGLE-AbSOCIATION"

"Promot ion-.Damot ion"
"SINGLE-PRIJNOTIaN _DE!4OTION"

"SINGLE..ESTIRATION-PREDICTIaN"I
"Dynamicaljmode.1"

"CONSTANT-VELOCITY-DYNAMICAL-IODEL"
"CONSTAIT..ACC"LLERATION..DYNANICAL-IODEL"I
"SINGLEVU-PLJS-ACC-DYjjAjGAL-ODELI'

"HeaureentModel"
"RAE-PMEAS..MODEL'
"VAE-MP.AS..MODEL"
"RVAE-IEAS-IODEL"

"PlantXoiseModel"
"FhXED-.PLANT-HOISE..MODEL"
"?KMOVN.AM1..PLANT..NOISE-IODEL"

"Filter~"
"SIHPLIFIED-GAINS..FILTER"
"I.EAST-.SQUARES-FILTEa"
"KALMAN-FILTER"

"InitialStateModel"
"SINGLE-OBS-DERIVED..INIT..STATE..NODEL"I
"SINGLE-,GRP..TRX..DERIVED..INIT..STATE..HODEL"I

"SINGLE-.VEL..PLUS..ACC..DYNAMICAL-..ODEL'I
"Model-Generat ion"

"GATE-..ASED-.MOD)EL..GENERATION"
"CHI-SQUARE..DASED-IODEL-GEMERATION"I
"LIKELIHOOD..DASED-IODEL..GEJIERATION"I
"PROBABILITY-BASED-MODEL..GENERATION"-

"Model-.Score"
"HIT..MISS-PATTERNSCORING"
"CHI..SQUARE-SCORING"O
"LIKELIHDOD-SCaRING"
"PROBABILITY-.SCORING"

"Model-Selection"l
"ZERO..SCAN-DYNAJIICAL..NODEL-SELECTION"I
"ILSCAN..DYNANICAL..HODEL-.SELECTION"I

"Model-.Transit ion"
"IVEL-TO-ACCDYHAMICAL..MDDELTRkNSITION'I
"ACC-TO..VEL-DYNANICAL...NDEL_.TRAESITION"

"SINGLE-ASSOCIATION"
"Gate-Calculat ion"

"RECTANGUUAR-GATE..CALCULATION"
"EI.LIPTICAL-GATE-CALCULATION"
"PARALLELOGRAM-.GATE..CALCULATION"I

"Candidate..Genexation"
"GATE..BASEflCkND1DATE..USNEATION"I

"-CHIIISQUARE-BASED-.CADIDATE-GENERATION"I
"LIKELIEUOD-BASED.-CANDIDATE-GEMIERATION"-
"PROBAI3ILITY-BASED..CANIDIDATE..GENERATION"-

B-3

"Candidate-Scoring"
"HIT..NISS-PITrERISCORIIIG"
"CHI-ISQUARE. SCORING"
"LIKELIHOOD-SCORING"
"PROBABILITY..SCORING"

"Candidate..Select ion"
"-Z..SCAN..UNCOORD-.HARD..GELECTION"-
"PDA-HYP..SELECTION"
"GREEDY-HYP-SELECTION"
"MUNKRES..HYP_.SELECTION"
"MUUKRES-W-.CLEANiUP-HYP-SELECTION"I
"CLEAUP-HYP-3ELEC"'ION",
"AUCTION..HYP-.SELECTION"
"-NETWORJC.YLO-HJYP..SELE(!TION"
"INT-PROG-.HYP..SELECTIUN"
"IJPDA-HYP..SELECTION"
"SPLITING..HYPSELECTION"
"SPLITTING.V-MERGING..HYP-SELECTION"I
"SINGLE-N-SCAN..COORDINATED_3ELP.CTION'I
"SINGLE..N.SCAN-CUOIWINATED-.SELECTION"I

"SINGLE-.M.SCAN-.CCORDINATEDT)sELECTION',
"Hypothesis Generation"

"K-.BEST-HYP..GENERATION"
"ALL..ABOVE..THRESHOLD-HYP-GENERATION"I

"Hypothesis Selection"
"N..SCAILCUUR&HYP.SELECTION"

"SING .E-PROMOTION..DEMOTION"
"Initiation"

"ON-ALL..INIT-LOGIC"
"GATE..BASED-INIT..LGGIC"
"-CHIIISQUARE..BASED..INIT..LOGIC"
"LIKELIHOOD-.BASED-INIT-.LOGIC"
"IPROBABILITY-.BASEDNIIT..LGGIC"I

"Track..Scorine"
"HIT..NISS_.PA'k FRN SCORING",
"CHI-SQUARE-SCORINGI"
"LIKELIHOOD-.SCORING"
"PROBAILITY-SCORING"

"Promote-Logic"
"R...F...N.PRAOHOTE-LOGIC"
"CHI-.ZQUARE..TEST-PRO~laThLOaIC'I
"LIKFLIHOOD..TEST..PRONOTE-.LOGIC"I
"PROBABILITY-..TST-PRrnOTE-LOGI%;"

"IDGMote-.Logic"
"K JIIsSSDENOTE-LOOIC"
"-CHI-SQUARE-TEST-DF.NOTE..LOGIC"1
"LIKELIHOOD..TEST..DEMOTE.LOGIC"I
"PR ?ýBILITY..TEST-.DENOTE-.LOGIC"I

"GROUPS"
"Est isat ion..Prediction"

"GROUPS-ESTINATION-.PREDICTIaN"
"Association"

B-4

"GROIJPt-ASSOCIATION"
"Promotion.D-mot ion'

"GROUPS-PROMOTION..DEMOTIONII

"GROUPS-ESTIMATION-.PREDICTION'I
"Centroid..Oynhaical..Hodel"

"CONSTANT3iELOCI-TY-DYNAMICAL-JWDEL"I
"CONSTANT..ACCELERATION..DYNAMICAL-MODEL"-
"GROUPS. VELPLUSACCDYNAN1CAL-MODEL"

"Measurement..Nodel:
"RAE..HEAS-IODEL"
"1VAE..HEAS-.MODEL"
"IRVAE-jEAS-K.ODLL"

"Plant..Ioise-Model"t
"FI.XED-.PLANT-IOISE..HODEL"
"KNOWN_"M I..PLANT-.NOISE.-MODEL'

"Filter"
"SIMPLIFIED-GA1NS-FILTER"
"LEAST-SQUARES-FILTER"1
"IIALMAN-FILTER"

"Initial-Stete.Model"
"GROUPS..INXT.STATE.J(ODEL"

"GRWUPS-VEL-.PLUS.ACC-.DflIAMICAL-IODELL
"Model..Geanirmtion"

"GATE-BASED-MODEL..GENERATION'
"-CHI-3QUARL-BASEDJXaL'EL..GEUERTIOU"-
"LIKELIHOOD-BASEDJaODEL-G.EuERATION"I
"PROBABILITY-BASD-srjODLL-OENEaArlON"-

"ModelScore"
"HIT-.KISS-PATTERN-.scaaIbo"
"'CHI..SQUARE_.SCOJING"
"LIKELIHOOD-SCORING"
"PROBAB*.-LITY-S.CORIN0"

"Model-.Selection"
"ZERO-SCAN-.DYNAPIICAL-MW)EL-.SELECTXON"I

"L-SCAN-DYNAIIICAL-(ODEL..SELECTION'I
"Model-Transit ion"

I'VEL..TOACCDYNAJIICAINODDZLTRAJSITION"I
"ACC..TO..VEL..DYNMAICAL.JIODEL-TRANSIi'ION"I

"G3ROUPS-ASSOCIATION"
"GateCalculation"

"RECTANGULAR..GATE-CALCULATION'ý
",ELLIPTICAL-GATE-CALCUL&TIOM"
"PARALLELOGRAM.GATE-CALCULA flON"

"Canididate-Generationi"
'IGfOUPS-.INDEPENDENT..HYP-.GENERATION"

"GROUPS-.DEPENDENT-HYP-GENERATIOI"
"Candidato..Scoring"

"HIT-.HISS-PATTERN-SCORINIG"
"-CHI..SQUARE..SCORING-'
"LIKELIHOOD-SCORING"
"-PRCBABILITY-SCORING"

"Candidato..Selection"

B-5

"Z.-SChIN-NCOORD-HAR-SELECTION"
"PDA-HYP-SELECTION's
"~GREEDY-HY-SELEZTrOM"
"NIYUMMES -YP..SELECTION~

"CLEAfUPt.WJYP-SELEfCTlON'
"AUCTION JiYP-3F.LZCT10VN"
"NET'iORK-FLOW-[YP-SELTION'IaN
"I T-PROG-M-?SELECTION'"
" JPDA-.HYP-SELECT.ION"
"SPLITTING-HTP..SELECTION"
"SPLITTING..W-IEfGIXG-.HYP..SELECTaION"I
"GROUPS..N-.SCAN..COORDINATED..SELECTION"
"GROUPS-..NSC UN-CORFDINATED..SE.ECTIOW'

"GROUPS- ' SCAB COORDINATED-SELECTION"-
"Hypothesis Generation"

"X-BEST.-HYPGENYRATION"
"ALLABOVE-fHA'ZSHOLD-HYP_.GENERATION"t

"Hypothesis Selectioun"
"N-SCAIl-COORD...fYP..SELECTION"

"GROUPS-PRIJMOTION-DENDTION"
"Initiation"

"ON-ALL..INIT-LOGIC"
"GATE..BASED-INIT-LOGIC"
"CHI..SQUARE..BASED..INIT-.LOGIC"
"LIKELIHOOD-BASED..ISIT-.LOGIC"
"-PROBABILITY-BASEDJNIT_.OGIC"-

"Trac~k.Scorinr6'
"HIT-NISS-PATrEDE.SCORING"
"-CHI..SQUARESCORING--
"LIXELIHOOD-.SCORING",
"PROBABILITY-.SCORING"

"P.ronoteLogic"
"IN-0F-M-.PRLJHOTE-LOGIC"
"CHI-SQUARE-EST..PRONOTELOGIC"-
"LIKELIHOOD-TEST-PROMOTE-.LOGIC"I
"IPROBA"ILITY-TEST-PRwOOTE.LOGIC"I

"Denote-.Logic"
"K-..ISS-DD(OTE..LCGIC"
"CHI-SQUARE-MST-DErPOrELOGIC"
"LIKELIHnOD-TEST-D.ENOTE..LOGIC"I
"PROBA~lLITY-TEST..DEKOTE-LCGIC"

"FOIIMATIONS"
"Est imation-Prediction"

"FOR (ATIONSESTIMATION-PREDCIcfON"
"Association"

"FORNATIONS-ASSOCIATIOU"
"Promot~ion..Demot ion"

"FORIUTIONS-PRL3NOTIONDEMOTION"I

"FORMATIONS-ESTI~aAIOM.YREDICTIOH"-
"DynaaticalModel"

B-6

"CONSTANT-VELOCITY..DYNAJMICAL..MaDEL'
"CONSTANT..ACCELERATION-DYNA.NICAL..NODEL"
"FORKAT1OUS-VELPLUS..ACC-.DYNAJIICAL-IODF.L"-

"Measurement-.Model"
"HAE..hEAS..MODEL"
"VAE-PEAS-.MODEL'
,'RVAEMEAS-MODEL'

"PlantNoise..Nudel"
"F1IED-PLAiT-NOISE-IODEL"
"KNOWN-AM1 .PLANT..NOISE..HODEL"

"Filter"
"SIflPLIFIED-.GAfllS.FILTER'
"LEAST..SCYARES-.FILTER1"
"IIALNA:IFILTER"

"FORMATIONS-INXT.STATE..NODEL"

"FOINRTIOKS-VEL-PLUS..ACC-DYNAMICALMODEL"I
"Model-Ge~nerat ion"

"GA.E-BASED-IODL-GENEP.ATION"I
'SCHI-SQUAIMJ3ASED-MODEL..GENERATTrON.*
"~LIKELIHOOD-BASED-M0DEL-GENERATION"I
"PROBAD)ILITY..BASED..MODEL..GENERATION"1

"Hwdlel.Score"
"HIT..NISS-PATTERN-SCORIilG"
"-CHI..SQUARE..SCORING-"
"LIXELIHOOD-SCORING"
"PROBABILITI..SCORING"

"Model..Se1,ctioull
"ZERO-SCALN.DYNA11ICAL-(ODEL.-SELE';TIGN"I
"1.SCAJLDYNAMICAL-..ODEL-SELECT1ON"I

"Kidel-.Transit ion"

"IVEL-T(LACC..DYNAJFICAL-.MODE.L.TRANSITION"I
"ACC-.TO-3EL-DYMAMICAL..MODEL-.TRANSITION"t

"FORMATI(USKS-kSSOCIATlON"
"Gate-.Calculat ion"i

".RECTANGUIAR-GATE-CALCULATION"I
"ELLIPTIC~.U. -GATE-CALCUUTION'
' :'ARALLELOGRAJIGATE..CALCULATION"

"Coxrelation"
11FQJRiqTIONS. .TEM9PLATE_.CORMt'
"'FORHATIOSS .STATISTICALCORW"
"P'iflATIONS..INTE&tTRACK..CORR"

"PIORMATIONSPKOMOTIQNODENOTION"-
"Initiation"

"1O&_ALL..INILOGIC"
"GATF2-.ASEOD.ItIT-LaGIC"1
"ICHI-SQUAREBASED-INIT..LOGIC"
"LIIhELIHOOD..BASED..INIT..LOGIC"
"PROBABILITY-BASED-INIT-LOGIC'

"Track..Scoring"
"HI1!..NISS-PATTERN-SCORING"1
"CHI..SQUARE-SCURING"

B-7

"LIKELIHOOD-.SCORING"
"PROBABILITY-SCORING"

"Prosote..Logic"
"M..0F-N-PROMOTE-LOGIC"
"CHI..SQUARE-TEST-.PROMOTE-.LOGIC"1
"LIXELIHOOD-TEST..PROMOTE-LOGIC"
"PROBLBILITY-TEST-PRLJMOTE-LaGIC"I

"Denote-Logic"
"K-MISS-.DENOTE-j.OGIC"
"CHI-SQUARE-.TEST..DENOTE..LOGIc"
"LIKELIHOOD..TEST-.DENOTE..LOGTC"I
"PROBABILITY..TEST..DEMG=- -LOGIG"

"CLUTTER-.DISCRET1ES"
"Est imation-.Predict ion"

"CLUT FER-ESTIMATION-PREDICTIO K"
"Association"

"CLUTTER..ASSOC~iTION"t
"Promotion-Demotion"

"CLUTTER-.PROHOTIOU..DENOTION"

"CLUTTER-.ESTINATION-.PREDICTrION"I
"Dynamical-Model"

"CONSTANT..VELOCITY-DYNANICAL.JIODEL"I
"CONSTANT-AC',ELERATIONDM..DMI~CALIaODEL"I
"CLUTTER..VEL .PLUS-.ACLC.-DYNAMICALL MODEL"

"HeasurementModel"
"RAE-HEAS..MODEL-1
"VAE-HEAS-MODE.L"
"IRVAE-rEAS..MODEL"

"PlantNojseModej"
"FIXED..PLANT-NOISE-MODEL"
"KNOWN..AMI..PLANT-.NDISE.,MODEL"

"Filter"
"SIMPLIFIED..GAINS-FILTERp'
"LEAST-SQUARES-FITTER"
"KALMAN-FILTER"

"CLtJTTER..INIT-STATE-MODEL"

"CLUTTER3EL-PLUS-ACC-.DYNAMICAL-MODEL"I
"Modol-Generat ion",

"GATE-.BASED-M.ODEL-GENERATION"
"CHI-SQUARE-BASED-IODEL-GEJIERATION"-
"LIKELIHOOD..BASED_.MODELGENERATION"t
"PROBADILITY..BASED..NODEL..GENERUTION"I

"Model-Score"
"HIT-!ISS-PATTEJWSCORING"
"CHIj3IQUARE..SCORING"
"LIKELIHOOD-SCORING"
"PROBABILITY-.SCORING"

"ModelSelection"
"ZERO-SCAN..DYNAMICAL..MODEL-SELECTION"
"N-SCAN-DYNAMICAL-JWDEL-SELECTION"-

"Model-Transit ion"

B-8

'-VEL..','O.ACC-DYNAMICAL-.MODEL-TRANSITION'-
"ACC-TG3EL-.DYNAMICAL-MWDEL-TRANSXTION'1

"CLUTTER-ASSOCIATION"
"Gate-.Calculat ion"

"-RECTANGULAR-GATE-.CALCULATIOI"1
"ELLIPTICALGATE-.CALCULATION"
"PARALLELOGRAJLGATE..CALCULATION'I

"Candidate-.Genieration"
"GATE-.BASED..CANDIDATE-GENERATION"-

"OCHI-.SQU~iRE-ASED-.CANDIDATE..GENERATION"-
"LIKELIHOODEASED..CANDIDATE..GEMEPATION"I
"PROBABILITY..DASED-.CANDIDATE.GEJIEBATION"I

"Candidate-.Scoring"
"-H!T..NISS-PATTERILSCORING'
"CHI..SQUARE-.SCORING-1
"LIKELIHOOD-.SCORING"
"PROBABILITY-.SCORING"

"Candidate-~Select ion"
"Z-3CAN-UNCOORD..HARD.SELEC*TION"I
"PDA-.HYP..SELECTION"
"GREEDY-HYP-SELECTION"
'NMUNKRES-HYP..SELECTION-1
"N NICKRES-W-~CLEAEUP..HYP-.SEL.ECTIDN"-
"CLEANUP..HYP..SELECTfION"1
"AUCTIOI..HYP..SELECTION"
"NETWORI..FLOW..HYP-SELECTION"
"INT-PROG-HYP-SELECTION"
"IJ.PDA-.HYP..SELECTION"
"SPLITTING..HYP-.SELECTION"
"ISPLITTING-W-W..NRGING-HYP-SELECTION"1
"CLUTTER..ILSCAN-COORDINATED-.SELEcTION"I
"ICLUTTER-.N..SCAN-.COORDINATED..SELECTION"-

"-CLUTTER-N3CAN..COORDINATED-SELECTION"I
"Hypothesis Generation"

"K-BEST-HYP-GENERATION"
"ALL-.ABOVE.THRESHOLD-HYPGENERLATION"

"Hypothesis Selection"
"IN.SCAN..COORD-HYPSELECTION"

"CLUTTE7R-.PRONOTION-DE(OTION"I
"Initiation"
"ON..ALL-INIT..LOGIC"
"IGATE-BAF~r-'D-INIT-Lf.IC"~
"CHLISLJUAk&EBASED-INIT..LOOIC"I
"LIKELIHOOD-B.ASED-INIT..LOGIC'
"PROBABILITY-BASED-INIT-LOGIC"

"Track..Scoring"
"HIT..NISS-PATTERN-SCORING"
"CHX..SQUARE..SCORIiIG-
"LIKELIHOOD-SCORING"
"PROBABILITY-SCORING"

"Pronote..Logic",
..- GOF-N-.PRLJOTE..LOGIC"

B-9

"CHI-SQUARE-.TEST-.PROMOTE-..OGIC"1
"LIKELIHOOD-TEST..PRONOTE-LOOIC"

"PROBABILITY...T1ST-PRflOTE-.LOGIC"-
"Denote-.Logic"

"1CJ41SS-.UEIOTE-.LCGIC"
"CHI-.SQUARE-.TEST-DEniOTE.LOGXIC"
"'LIKELIHOOD-.TEST..DEMOTE..LOGIC"
"PROBABILITY-TEST-.DEIOTE-.LOGIC'

"ZERO-S(CAN-SIG-2ROC"
"N-SCAN-REED-SIG-PROC'
"N-SCAN-.TE1U'LAT~...H-ATCHIMG..SIQ.-PROC"

".,ATE.BASED..NODEL.GEIERATION'
"CHI-SQUARE..HASEDJIODEL...GENERATION"t
"LIKELIHOOD..BASED..MUDEI...GENEBJTION"
"PROBABILITY-B.ASED-IODEL-GENE.RATION"I

"ZERO.SCAN..DYNANICALj9ODEL-SELECTION"I
"N-S5CAN..DYNlJ.MCAL-HODEL..SELECTION"1

"VEL..TO-ACC-DYNANICAL-.MDDEL..TRANSITION'I
"ACC..TO-VEL-.DYNANICAL-MODEL.ThANSITION"

"R&E.NEAS-KUDEL"
"VkE-MEAS-.HODEL'"
"RIVAE-HEAS..MODEL"

"FIIED-.PLANT-.NOISE..MODEL"
"KNOWN-AMI-PLANT-NOISE.JIODEL"

"SIMPLIFIED..GAINS-FlLTER'
"LEAST-.SQUARES-FILTER"
"KALMAN-FILTER"

"SINGLE..ODS-.DERIVED-.INIT-STATE-MODEL"
"SINGLE..GRP..TRX-.DERIVED..INIT-.STATE-MODEL"

"CONSTANT-VELOCITY-DYNAMICAL-MODEL"-
"CONSTANT-ACCELER.ATID!LDYNA!4CALMODE.L"

"K..BEST..HYP.-GENERATION"

"ALL-A9OVE-THRESHOLD-HYPGEJIERTION"1

"N .SCAN..COORD-.HYP-SELECTION"

"RECT'ANGUUFL-GATE..CALCULATION"
"ELLIPTICAL-GATE-CALCULATIOM"
"PARALLELOGRAILGATE-.CALCULATION"

"GATE..BASED..CANDID)ATE.GENERiUTIONi"
"CHI-SQUARE-BASED-CANDIDATE-.GENERATION"-
"LIKELIHOOD-BASED-CANDIDATE-.GENERATIOM"
"ýPROBABILITY-BASED-CANDIDATE..GINErAkTION"

B-10

"IZ-SCAN-UNCOORD-HARD-,SELECTIONs
"PDA-HYP-SELECTION"
"GREEDY-HYP..SELECTION'
"KtZNKRES.J{YP..SELECTION"
"MNtKRES-..VCLEANUP-HYP..SELECTIC2N'
"CLEAMUP..HYP..SELECTIaN"
"AISACTIONATP-SELECTION.I
"NETWORK-FLOW HYPSELECTION"
"INT-PROG-.HYP..SELECTION"
"JPDA-HYP..SELECTION"
"SPLITTING.JIYP-.SELECTION"
"SPLITTING..W-NEMING-HYP..SELECTION"I

"ON..ALLILNIT.LOUGIC'
"GATE-BASED-INIT-LO)GIC"
"CHI-SQUARE-BASED-INIT-LOGIC"
"LIKELIHOOD..BASED-.INIT-.LOGIC"

"HIT-MISS-PATTERN-SCORING"
"CHI-SQUARE-SCORING"
"LIKELIHOOD-SCORING"
"PROBABILITY-.SCORING"

"I(.OF-.N-PRONOTE..LOGIC"
"CHI.-SQUARE-ETrSy-RONOTE-LOGIC"I
"LIKELIJIOOD-TEST-PROMOTE,.LOGIC"l
"PROBABILITY-TST-PtOMOTE-LUGIC"

"K-HISS..DEMOTE-LOGIC"
"CHI-SQUARE-EST..DEIOTE-LOGIC"I
"LIKELIHOOD-TEST.JJENOTE-LOGIC"
"PROBABILITY-TEST-.DENOTE.LOGIC"I

"GROUPS-INDEPENDEN1'-HYP-GENER<ION"
"GROUPS-DEPEN[DENiL.HYP-GENERATION"

"GROUPS-INIT..STATE-!OLDEL"
"FORIIATIONS-INIT-.STATE-MODEL"
"CLUTTER-INIT-STATE..NODEL"

"FORNATIONS-TEJULATE-CORR"
"FORMATIONS-STATISTICAL-CORR"
"FORMATIONS-INTERTRACK-CORR",

B-il

Appendix C. Summary of Z Notation

LHS ý- RHS Definition of LHS as syntactically equivalent to RIIS

x: T Declaration of x a& type T

x?: T Declaration of x as type T used as input to an operation

x!: T Declaration of x as type T used as output by an operation

x Value of x before an operation

x' Value of x after an operation

0 The empty set

P X The power set of X

F X The finite subset x of X

ScT SisasubsetofT

t E S t is an element of S

t 0 S t is not an element of S

S U T Set union

S n T Set intersection

T• x T 2 Cartesian product

X -'+ Y The set of partial functions from X to Y

1 .-4 rn I is related to m

SSchema Include but do not chan&.Ž the schm,-.Y

A Schema Include and allow change to the schema

S < T Domain subtraction

RE R2 Overriding

Such that

C-1

Appendix D. Selected FORTRAN Module

C HOMEWORKC PROJECT #1 - DISCIRETE KALMAN FILTER
C GREG BIERMAN
C

PROGRAM PROJ 1

C 'VARIABLE LIST
IMPLICIT NONE
INTEGER K,C,I1,12,IS,IOPT,NGR,NPT,J
REAL X(i0o),Y(1OO) .VX(i0O).VY(10O).XHATN(2,1),XHATOLD(2,1)
REAL VX(100),VY(100),Z(2,1),XHAT(2,I),ZHAT(2,1),NUC2.1)
REAL P(2,2),F(2,2),FT(2.2).R(2,2),PN(2,2)
REAL TEMPI (2,2), TEIU'2(2,2).Q (2,2) H(2.2). S(2.2) HT(2.2),SI (2, 2)
REAL W(2,2).WT(2,2),XTILDE(2.1),XTILDETCI,2),EPSILON(1,1)
REAL Grrph(20,2OO) ,PI(2.2)
CHARACTER* 16 Namag (20)
COMMON /SEED/ 11,12
11.12345
12w64321

C OPEN FILES USED TO STORE DATA
Opon(Unit-8,File-'XALMAN.PLT' .FORI('wiloruatted' ,Statua'Inev')
Opan(Unit-9,Fil.m'KALMAN .PL' ,Status*'xn.w')
Dpem(Unit.1O.File.'XTRJJTH.PRN' ,Status-'new')
Open(thxit.11,Fiea&'YTRWTH.PRN) ,Statusm'newl)
Dpen(Unitu12,File"s'XNEAS.PRN' .Statusm'ne,')O
tlpen(Unit.13,File. 'YNE.AS.PRN' ,Status-'nev')
Open(Unit.14,File='IEST.PRN' ,Statua-'neu')
Open(Uuit-16,File-'YEST.P!W' ,Statua-'new')
Open(Unit-16.File-'XNOISE.PRN' .Statusw'nev')
Open(Unitml7.Fils-'YNOISE.PRN' .5tatusm'new')
Open(Unitu2O.Fila.'ZXNOISE.PRNI'.Statua-'ntov')
Open(Unitma2l .File.'ZYNOISE.PRJI',Status-'new')
Opirn(Unit-22,File='Pl1.PRN' ,Statuanu'ew')
Open(Unit.23,Fileu'P22.PRi' ,Statusa'nev')
Open(Unit-24,Film's'EPSILON.PRN' ,Statuo..'ncr')
Open(Unit-26,File-'XTILDE.PRN' ,Statuau'aeow')

C START MAIN PROGRAM (73 POINTS CULLECTED)
C a 73

C COMPUTE MODELLING NOISE (SET TO ZERO)
DO K-1,C

CALL NOISE(0.0,WX(K) .12)
CALL NOISE(OO,WY(K),12)
Write(16,*) WX(K)
Write(17,*) WY(K)

and do

C SET INITIAL VALUES
V00)10.0
Y(0)-O0-

D-1

z0i,001)u.0
Z (2 1) -0. 0
P(1.11) - 1.0
P(1.2) - 0.0
P (2. 1) a 0.0
P (2.2) a 1.0
F0.1i) w COSD(B.0)
F(1,2) - -0.6.SINO(5.0)
F(2.1) -2*SIND(S.O)
F(2.2) -COSD(B.O)
CALL NTXThP (F.FT,2,2)
Q(1,1) - 0.0
Q(1.2) a 0.0
q(2.1) - 0.0
Q(2.2) - 0.0
HC1.i) - 1.0
H(1,2) - 0.0
H(C2,1) - 0.0
H(2,?) - 1.0
CALL NTXTRP (H.HT.2,2)
R(1,2) m 0.0
R(2,1) - 0.0
IS w 0
XHATOLD(191) - 10.0
XHATOLD(2,1) -Q.

C START KAI'N LOOP
DO K-1,C

C WRITE INITIAL VALUES TO FILES
Graph~l,K) - X

Writee.t0.*) XCR)
Writa(l1,*) Y(X)
Graph(2,K) - 1(K)
Graph(3,K) - Y(X)
Oraph(4.K) - Z(1,1)
GraphC5.K) - Z(2,1)
WriteC12.*) Z(1,1)
Write(13,*) Z(2,1)
Graph(8,K) - PC1,l)
Graph(9,K) - P(2.2)
WritaC22,*) K1.1i)
Write(23,*) P(2,2)
GraphC6,K) - XHATOI.D(l.1)
Graph(7,K) - XIIATOLD(2.1)
Write(14,*) XHATOLD(l,1)
UriteC15,*) XHATOLD(2.1)

C NORMALIZED STATE ERROR (EPSILON -XTILDET*PIUV*XTILDE)

C XHATOLD - IHATI
XTILDE(l,1) - X(K)-XHATOLD(l.1)
XTILDE(2,1) - Y(K)-XHATOLD(2.1)
CALL MTXTRP CXTILDE.XTILDET.2,1)
CALL KfTXINV(P,FI,TEMPI,2.IS)
CALL KTXMUL(XTILDET.PITEMP,1 .1.22)

D-2

CALL MUXMUL(TENPI .XTILDE,EPSILUJN1 .2,1)
Graph(1O.K) - EPSILON(1,l)
Writo(24,*) EPSILON(1,i)
Gi-aph(llK) - XTILD1E(l.1)
Write(25.*) XTILDE(.1.)

C STATE PR~LDICTIONH; ZHAT - F*XHATOLD
XHAT(1.1I)-F(1, 1)*XHATOLD(U, l)+iF(i,2)*XJIATOLD(2,1)
XHAT(2,1).FC2,1)*XHATOLD(1,1)+F(2,2)*XHATOLD(2.1)

UTRUTH; X(K+1) * -F*X(C)
W(41) - F(1.1)*X(X)+F(1.2)*Y(K)+VX(K)
Y(X*1) - ',.(2.1)*X(K)+F(2,2)*Y(r)+WY(X)

C COMPUTE MEASUREMENT IWiISE
Ml1.1) - O.2v;ABS(XUC+1))
R(2.2) - O.2*ADS(Y(X+1))
CALL NOISE(O,R(l,1) .VXCI+1) .12)
CALL NOISE(O,R(2.2) .VY(KI+) .12)
Write(20,*) VX(K.1)
Write(21.0) VY(K+1)
Graph(12,K41) - VX(IC.1)
Graph(13.K41) -VY(X+1')

C MEAWREMENT; Z - X+V
ZC114)nXCK+1)+VX(iC+1)
Z(2,1)..YCK+i)+VYCKIC~)

C MEASUREMENT PREDICTION (ZHAT-H*XHAT)
CALL MTXMUL(H,XHAT,ZHAT&,2,2.I!)

C INNOVATION (NU-Z-ZHAT)
CALL NTXSUB(Z.ZHAT,N[U.2,1)

C STATE PREDICTION COVARIANCE CP-F*P*FT+g)
CALL NTXHUL(F,PTEMPI,2,2,2)
CALL NTXMUL(TEMPI,kT.TEMP2,2.2,2)
CALL MTXADD(TEMP2,Q.P,2,2)

C INNOVATION COVARIANCE (SuH*P*HT+R)
CALL MTXMJL(H,P,TEMP1,2,2,2)
CALL NTXMUL(TEMP1,HT.TENP2.2,2,2)
CALL NTXADD(TEMP2.R,S.2,2)

C FILTER GAIN (W-P*HT*SI)
CALL MTXINVCS,SI,TEMP1,2,IS)
CALL MTXMULCP,HT,TEMP1.2.2.2)
CALL MTXMULCTEMP1,SIV,2,2,2)

C UPDATED STATE CnVARIANCE (PN-P-W*S*WT)
CALL MTXTRP (W.VT,2,2)
CALL KTXNULCV.STEM[Pl,2,2,2)
CALL MTXNULCTEPI,WT.TEMP2,^&,2.2)
CALL NTXSUB(P,TEN2.PN,2,2)

D-3

P(1.2) - PN(1.2)
P(2.1) - PN(2,1)
P(2,2) - PN(2,2)

C UPDATED STATE ESTIMATE CXHATM.XHAT+W*NU)
CALL NTXM'UL(W.NUTEMP1.2,2,1)
CALL MTXADD(XHAT,TEXP1,XHATN,2,1)
XHATDLD(l,1) w XHATNC1,1
XHATOLD(2,1) - XHATN(2.1)
and do

C PLOT ROUTINE FOR OUTPUT DATA
NG~m13
Nameg(l) - 'K'
Nammg(2) - IX TRUTH,
Namag(3) - 'Y TRUTH,
Namag(4) - 'X MEASURED'
Namseg(6) - 'Y)EASU.IED'
Nameg(6) - 'IX ESTIMATE
Nameg(7) -'Y ESTILMATE)
Nameg(B) - 'P11. X COVAR'
Namag(9) m 'P22, Y CoVAR'
Naueg(10) - 'EPSILON'
Nameg(l1) a 'XTILDE'
Naaeg(12) - 'MEAS NOISE X1
Nameg(13) a 'MEAS NOISE YV

IOPT 1
NPT - 73
WRITE(B) NGR,NPTPIOPT
WRITE(8 (Nameg~j) ,j-1.NGR)
WRITE(S ((Graph(j ,k) ,k-1.NPT) ,j-1 ,NOR)
WRITE(9,*) NGRINPT.IOPT
WRITE(9,a) CNaxeg(j) .j-iN±,GR)
WRITEC,.*) C(Graph(j ,k) ,k-iNPT) .j-1,NGR)

C CLOSE DATA FILES
Close (8)
Close (9)
Close0(0)
Cloc660i)
Close (12)
Close (13)
Clo~.e(14)
Close~is)
Clome(16)
Close (17
Close(18)
Close (19)
Close (20)
Close (21)
Cloase(22)
Close (23)
Close (24)
Close (25)

1-4

End

C
C THIS PROGRAM CALLS RANDOM GENERATOR TO GENERATE GAUSSIAN NOISE.

C
C N is set 12
C

SUBROUTINE NOISE(XMEAN,VARIANCE.RNDMN ,N)

REAL A,Y ,REDMN,XMfEAN,VARIANCE
INTEGER N
COMMON /SEED/ 11,12

A-0.0
DO I I-1,N
YmRAN(I1,12)
AwA+Y

00001 CONTINUE
RNDMN-(A-N*O. 5)SQRT(VARIANCE)+XMEAN
RETURN
END

C**e**e$$$$$*** SUBROUTINES OF MATRIX OPERATIONS $�**$*$$$$**

C
SUBROUTINE MTXMUL (AB,C,NI,N2,N3)

C A IS NICN2; B IS N2eN3; C - A*B IS N1*N3
real A(NI,N2), B(N2,l3), C(N1,N3)
DO I - 1,N1

DO J - 1,N3
C(IJ) - 0.0
DO K 1,N2

C(I,J) - C(IJ)+A(I,K)*B(K,J)
end do

end do
end do
RETURN
END

SUBROUTINE MTXADD (A,B,C,NIN2)

C C - A+B; ALL ARE N1*N2
real A(NI,N2), B(NIN2), C(N1,N2)

DO I - 1.N1

DO J - 1.N2
(:(I,J) - A(I.J)+B(I.J)

end do
end do
RETURN
END

SUBROUTINE MTXSUB (A,BC,NIN2)

C C - A-B; ALL ARE N10N2
real A(NI,N2), BUN1N2). C(Nl,N2)

DO I - INj
DO J - 1,N2

C(IJ) - A(I,J)-E(I.J)
end do

D-5

end do
RETURN
END

SUBROUTINE NTXZRO (A,Nl1f32)
C A-m0; A IS NJ*N2

real A(NI.N2)
DO I - 1.N1

DO J -1,N2
A(I,J) - 0.0

end do
end do
RETURN
END

SUBROUTINE MTXTRP (APB,NI,N2)
C B - TRANSPOSE OF A; A IS K1*N2 AND B IS N2*N1

real A(NlN2), B(N2.Nl)
DO J - 1,N2

DO I -1,N1
B(J,I) - A(I.J)

end do
end do
RETURN
END

SUBROUTINE MTXINV(A,AINV,B,KC.IS)
C AINV-INVERSE OF A, BOTHI ARE KC*KC
C B IS A WORKING ARRAY
C WHE~N IS-0, SUCCESSFUL RETURN. IS-i A IS SINGULAR.
C

real ACKC.KC) ,A!fJV(KC,KC).B(Kr.KC)
REAL TEMP. COMP .EPSKIP
N-1
IS-i
EPSKIP-i .OE-35
DO 1 Iul.KC
Do 1 J-i,KC
AINV(I,3)-O.0

00001 B(I,Il-A(I,J)
DO 2 Xui.KC
AINY (I, 1)-l.O

00002 CONTINUE
DO 3 =1i.KC
CONP-O.0
K-I

00006 IFCABS(B(K,I))-PBS(COMP))5,5,4
00004 COMP-B(K,I)

N-K
00005 K-K+1

IFCK-.KC)6,6,7
00007 ICC,)85,
00008 IFCN-I)S1,12,9
00009 DO 10 M-1,KC

TEMP-B(I,M)

D-6

BCI,M)-B(N,l¶)
B (N H) -TEMP
TEMPwAINV(I .N)
kIbNV(I .N)-AIIVC(N M)

00010 AINVCN,M)-TEMI'
00012 CONTINUE

TEMP-B (1,1)
DO 13 M's1,KC

00013 B(I.H)-B(I,H)/TEMP
DO 16 J-1,XC
IF(J-I) 14,16,14

00014 IF(BCJ.I))15,16,1b
00015 CONTIN!IE

TEMP-B (J,I)
DO 17 N-1.KC
IF(ABS(TEMP) .LT.EPSKIP)GO TO 17
IF(ABS(A1NV(I,N)) .LT.EPSKIP)GO TO 30
AINV(J .N)-AINV(J ,N)-TENP*AINV(I .1)

00030 CONTINUE
IF(ABS(B(I,N)).LT.EPGKIP)GO TO 17
BCJN)-BCJN)-TEHP*BCIN)

00017 CONTINUE
00016 CONTINUE
00003 CONTINUE

RETURN
00051 WRITE(6.52)
00052 FORRAT(SX,'THE MATRIX IS SINGULAR')

Is-0
RETURN
END

SUBROUTINE IDEMTX (A,N)
C A IS N*N

real A(N,N)
DO I - 1,N

DO J - 1,N
A(I,J) - 0.0

IF(I.EQ.J) A(I,J) - 1.0
end do

end do
RETURN
END

D-7

Appendix E. Developed CIDL Module

lot

incluts. xray;
inclu~de matrix;
include natrixop;
include noise;

#include "mathacdl";

-- VARIABLE LIST
ddt stoerebool): - debug variable only
iss store~bool);
five2rad store~real);
ii store~real); -- changed from integer
k, iopt. ugr, j, c, npt, i2 store(int);
X. Y. ox. vy array-create (real, 100):
xhata, xhatold -matrix-.create (real, 2, 1, 0.0);
'dx, vy -array-.create (real, 100);

*z, xhat. Zhat, nu m atriz..create(real, 2, 1, 0.0);
p, f, ft, r, pn, w, vt, pi -matriz..create(real, 2, 2, 0.0);
tempi. temp2, q, h, a. ht, ei - *atrix..create(real, 2, 2, 0.0);
I Lilde - matrix~create (real, 2, 1, 0.0);
-'~ildet - matrix..create(real. 1, 2, 0.0);
*-epsilon -matrix..crea:-e(real, 1, 1. 0.0); -- there was a problem with dimension in matsul

-r-silon - matrix-.create (real, 2. 2, 0.0);
raph -matrix..create(int, 20, 200. 0.0); -- was real
nameg - =ay-.create~string, 20);

-- OPEN FILES USED TO STORE DATA
2 8 strean(char) -create (char. "kalman-.plt");- need to use create instead of open
f9 str'au(char) - create(char, "Aalsi~npl"),
f10 streoan.chax) - create(cha~r, "~xtriAth");
*1. streuwi(char) - creaite(char, "lytr'itb") I
f12 streas(char) - create(char, "Imeas");
f.'3 strc.3i~c Ia:'- - create(cha:,-, "lymeas");
f14 ireaw'chax) - create~char, "zest");
115 vtxean~chur) -create(char, "yest");
116i &treaas(chdr) -cxieate.char, 'xnoise");
117 streau(ch-zr) - creato(char. "lyuoise"l);
f20 atream(chý-:) - creaeteichar, "~znoise");
f21 ',tream(ch&a) - create~char, "1zynoise").
f 22 ntream('hax) - create~char, "p11");

f21 streaa(tLbar) -create~char, "lp22");
f24 stream(.:har) - create(chax, "epsilon');
f25 strean(char) - create(char, "xtilde");

in
-- put here to label the files
I orwat (f18, ,KA1J(AN.PLT-%-%");
'lorn~t (19 3."KALMAN, .PL-%'C -):

E-1I

foz'.at(f1.X E .PN ')
f orsat(f13, IYHEAS.PRNV%');
forxat~fl4,'XES1 .PRN7-%'%);
foruvat(f15,"YEST.PRN-%X");
format Cf 16,'XNOI.SE.FRN-%-%);
forzat(f17."YNOISE.PRN-%i%");
fornaz(f20,"ZXMOISE.PRN-%-%'1;
forwat(iL21."ZYNOISE.PRN-%XX);
forvat(f22."P11.PRW-%-%'9;
formatCf 23. "P2" .PRWN~");
forsat(f24, 'PSILON.PRNi(-%")';
forxat(f25.ZXTILDE.PRNi-%-%);

ddt ;- false; -- debugging flag

-- START MAIN PROGRAM
-- ii : 12345; -- seed co~nstant, too largr,. generates 0 ~.i < 1234S

ii :1.0;

i2 :54321; -- seed constant
c 73; -- (NUMBER POINTS COLLECTED)

-- COMPUTE MODELING NOISE (SET TO ZERO)
k :-l;

vz.!Aitializo(0.O); -- teat 'Only
uy.iniitialize(O.0); -- test only
vx.initiaiiza(0.0);-- east only
vy.iuitZiaiize(O.0); -- test =1
loop
*bon cautentlkkŽ <- content(c)

wx.aasign(k. makeaaoise(0, 0, 12, Wi); lbad to be rewritten completely
wy.ajisign~k, wakenoise(O. 0. 12. W1)). u-s an assign I.nstead of passing

-- the ar-ray element to change

forwat(f17, "-d -%." u.index(k));

k :- k 1
etxd loop.

-- SET INITIAL VALUES
t.initializd00.0); .- test only
x.asaign(1. 10.0);

if content (cht) then -- if statement tar debugging/dewelopment
f,)rmat(terainal."1in array -1

x. print(0
sad if;

Y-iritializv(0.0); -- test only
Y.&Anign(I, 0.0);

it concent(ddt) then -- if statement for debugging/devtlopk.ent
forna'.(*irmmnal,Zy4 array-
y.print%..
and if;

z.assign~l, 1. 10.0Ž;

if conteut Cddt) then -- if statement f or dabugging/develope-int

E-2

format (teruiual."-Xz matrix =
z.print ()
end if ;

p.asaign(l, 1, 1.0);
p.assign(1, 2, O.n);
p.assign(2, 1. 0.0);
p.easign(2, 2, 1.0);

if conteu.t(adt) then -- ii statement for debugging/developmeut
format (terminal.p matrix= -);
p.print()
end if;

five2rad :- 2msath.pie6.0/360; -- the FORTMEU called for degrees, LISP uses radians
f.assi gn(, 1. , ath.cos(five2rad));
f.assign(1. 2, -0.5 * math.sin(five2rad));
If.assign(2, 1. 2 * uath.sin(five2rad));
f.assnign(2, 2. math .cos(five2rad));

it content(ddt) then -- it statement for debugging/development
forsat(termsial,"f matrix -
f.printO
end if;

matrix-transposa (f, it);
if contant(dAt) then -- if staLemenat for debugging/development
format toxminal."f matrix transpose- ");
ft .printO0
end if;

-- q.=nitialize(O.0); -- not needed
if content(ddt) then -- if statement for debugging/development
format (terminal.'q matrix -);
q. print 0
end if;

h.assign(l.1 1, .0);
"h.assi•n(1, 2, 0.0);
h.assipn(2, 1, 0.0);
h.assip(2. 2. 1.0);

if c=ntent(ddt) then -- if statement for debugging/developent
format(tUer "nal1h matrix -1)
h.print()
end if;

matrix.transpos. (Iiht) ;
if contant(dAt) then -- if statement for debugging/development
format (terminal."h matrix transpose- ");
ht.prit ()
end if;

r.assigp(1. 2. 0.0);
r.assign(2. 1, 0.0);

if conteut(ddt) then -- if statement foc debugging/development
format(terninal,"r matrix - '9;
r.print()

E-3

end if;

iss :- false;

xhatold.a~ssign(1. 1, 10.0);
xhatold.assign(2, 1, 0.0);
if content(ddt) then -- if statement for debugging/development

format (terminal."xliatold matrix
xhatold.print()
end if;

-- START MAIN LOOP
k :& 1;
loop

-- VRITE INITIAL VALUES TO FILES
when content(k) <- content Cc) ->

7,rumat(terainal.11-d-%". content Ck)): - monitor loop progress
graph-assign~l, k. k);
fozmata10, 11d Z.x-index(k):
loruat(fll. 11d X.y.index(k);
graph.assigza(2. k. x.index(W))
graph.amssig(3. k. y~index(k));
graph.assigz.(4. k. z.ijndex(1, 1);
graph.awaign(G. k. z.indexC2. 1);

foriaatW13, "-d -Z.z.index(2. 1))
graph.masign(8. k. p.index(i. M);
graph.assign(9, k, p.indezC2, 2));

format(f23. "-d itp-indei(2. 2));
graph.assign(6. k. zhatoid.inder(l, 1));
graph.assignCf. k. whatold.index(2, 1);

format(f 15. "-d 1~,xhatold.indox(2, 1);

-- NORMALIZED STATE ERROR (EPSILON - TILDET*PINV.ITIL~IE)
-- ATOLD - XHATE

stildo.assign(l. 1. x.index(k) zhditold. index(0. M);
xtilde.assigu(2, 1, y.indez(k) - hatold-i~ndex(2. 1);
matrix-.tranapos (xt ilde .xtildat);

if content (ddt) and content (k) - 1 then -- if statement for debugging/developinent
put ("itild."l);
xtilde.printO;
put ("xtildet").
itildet .print()
eWd if;

-- atrii..inw(p. pi. tempi): -- chahged the tempi to ins
matriz..inv(p, pi. is&);

it contmnt (ddt) and content (k) I then -- if statement for debugging/development
put (I.p*);
p.print 0;
put(Itp i") ;

pi-prin%0;
put("iss");

E-4

put (ian)
end if -

matrix-s.ult(xtildet, pi. tempi);
if content(ddt) and content~k) -1 then -- if statement for debugging/dlevelopment

put("xtildet") ;
xtildet.printo;
put("lpil);
pi.printO;
put ('tempi");
teapi .print()
end if;

matrix-m.iilt(taupl, xtilde. epsilon);
if content WOt and content W) 1 then -- if statement f or debugging/development

put(I"tempi");
templ.printO;
put("xtilde");
xtilde-printO;
put('eps,.lon");
epailon.print()
and it;

graph.assign(1O. k, epsilon. index(0. 1);
format(f24. "d -%", epsilon. indexl (1))M;

graph.assign(11. k. xtilde.indez(l. 1));
format(f26. 11d -%1 xtilde.index(1, 1));

-- STATE PREDICTION WIHT - FAXHATOLD)
zhat.assign(i, 1, f.index~l, 1) .xhatold. index (1, 1)

+ f.inder(l. 2)*xhatold-i!2dex(2, 1);

xhat-ass3*n(2, 1, f.index(2, 1)*xhatold.indez(1, 1)
+ f.index(2, 2)*xhatold.index(2. WD;

it content(ddt) and content Ck) - I then -- if statement for debugging/development
put("xhat");
zhat .print C)
end if;

-- TRUTH (X(1+1) - feICI))
x.asaign~kO.1. f.iudex~i, 1).x.index(k)

"+ f.indezC1, 2)'*y.isidex(k)
"* wx.index~k));

y-aimsign~k+1. f-index(2. I).x.index(k)
"+ ±.indexC2, 2)*y.inder(k)
"+ wy.index~k));

-- COMPUTE MEASUREMENT NOISE

r.assign(2, 2. O.24math.ab&(y.index(k+W)); -- had r(r,1) not r(2,2)

vz. asaign(k + 1, makenoine(O. r. in4IexlC 1). 12, ii)) ; -- ';I error in type caused problem here

vy.assign(k + 1, makenoiseCO. r.indezC2, 2). 12, Wi);
fornat(120. "-d %11, vz.index(k + 1);
format(f21, I'% -%", vy~indes~k + 1);
graph.ausign(12. k+1. vx.ind~x(k+1));
graph. assign (13, k+1, vy.ind#',x(k+1))*;

-- 'ASUIEMENT (Z - I+V)
z~assign~i. 1, x.index(k+1)+vx-indvx(k+1)).

E-5

z.assign(2, 1. y.index(k+1)+vy.index(k*1)),

M- EASUREMENT PREDICTION CZHAT - H*XHAT)
Ratriz..auit(h, xhat, zhat);

-- INNOVATION (NU - Z-ZHAT)
matrix-sub(z, zhat, nu);

-- STATE PREDICTION COVARIANCE (P a F*P*FT+cJ)
aatri:..uult(f, p. tempi);
3atrix-Ault(teapl, ft. teap2);
matrix..add(teap2, q, p);

-- INNOVATION COVARIANCE (S - H*P*HT+R)
natrirxrnuJt(h. p, tempi);
aatrix-mult(teapi, ht, teup2);
matrix-.add(tazp2, r, a);

-- FILTER GAIN (V - PsaHT*SI)
-- aatrix..inv(s. si, tempi); --old

natriz..uult(p, ht, teup~i);
satrix-s.ult(templ, si, w);

-- UPDATE STATE COVARIANCE OPN - P-V*S*WT)
matris..transpose Cv. wt);
matrix-a.ult(v. a. tempi);
aatrix..ault(teapl, wt, temp2);

p.assign(1, 1. pn.index(1. 1);
p-ashign(1. 2. pn.index(l. 2));

p.assign(2, 2. ru.±ndrx(2. 2));

-- UPDATED STATE ESTIMATE CXHATN a XHAT+W.NU)
uatric..uult(w, nu, tempi);
matriz..add~xhfl, tespl. xhatn);
xhat old. assign(1, 1, xhatn.index(1, 1));
xhatold.assign(2, 1, xhatn.indox(2, 1));

k :w k * 1

and loop;

if content (ddt) then -- if statement for debugging/development

graph.print() -- print loop result
end if;

-- PLOT ROUTINE FOR OUTPUT DATA
ngr :- 13;
naseg.assign(1, '111);
nam~g.aasaign(2. 11z truth");
naseg.assipf(3. "ly truth");
naneg.aasign(t., "z measured").
naueg.asrign(5. "y measured");

E-6

nameg.atsigfl(6, 11z estimate");
nameg.assign(7, *"y estimate");
nameg.assign(8. "p11, x in r)
nameg.assigix(9, "p2 2 . y covex");
nameg. assign (10. "epsilon");
nameg. assign U 1, "intilde");
nameg. assign (12, "seas noise x1");
nameg. assign (13, "seas noise y");

if content(ddt) then -- if statement for debugging/development
put ('nameg");
nameg. print(0
end if;

iopt :m1;
npt :-73; -- related to c above

-- the cidl, output statement is format C0
-- looks like write C can also be used

foruat~S ,"-d -d -d -%". content~ngr). cantent(npt), content~iopt));

-- write(e) Cnaseg'.index(j), j -. 1, Dgr) -- note FORTRAN use of assignment here
j :- 1;
formatUS 8 "a -d -%". ixamag.index(j), coxitent~ngr));
j :- 1;
k :- 1;
format(f 8. "-d -d -d 'graph -index (content Q) , content~k)), content(npt), contezat~ngr));
foruat~f9 "-d -d -d ilcontent(ngr), content~npt). content(iopt));
j :- 1;
forzat~f9. "-a -d -%", nameg.index(j), content~ugr));
j -. 1;
k :-11
formatf 9. "-d -d -d 'Vgraph. index (content Q) , content(k)), content~npt), content(DFr));

-- CLOSE DATA FILES
close(f8);
close(f9);
-loseMf 1);
close(f 1);
close(f 1);
close(M1);
close~f 14);
close~f 15);
close~f 16);
closeCf 17),

-- close(f 1); -- this was not used
-- close~fM9; -- this was not used

close CM2);
close Cf2l);
close(CM2);
close(f23);
closeCf 24);
close~f26);

end let

E- 7

Bibliography

1. "M. C. Escher: Twenty-Nine Master Prints,". Abrams, 100 Fifth Ave., New York, NY 10011,
1983. Photos by William Wegman.

2. Anderson, Christine and Merlin Dorfman, editors. Aerospace Software Engineering, 136.
Progress in Astronautics and Aeronautics. 370 L'Enfant Promenade SW, Washington, D.C.
20024-2518: American institute of Astronautics and Aeronautics, Inc., 1991.

3. Arnold, Robert S. "Software Reengineering," IEEE Conference on Software Maintenance
(November 1990).

4. Bar-Shalom, Yaakov and Thomas E. Fortmann. Tracking and Data Association, 179. Mathe-
matics in Science avd Engineering. San Diego, California: Academic Press, Inc., 1988.

5. Biggerstaff, Ted J. "Design Recovery for Maintenance and Reuse," IEEE Computer, 36-49
(July 1989).

6. Brooks, Jr., Frederick P. The Mythical Man-Month: Essays on Software Engineering. New
York, New York: McGraw-Hill Book Company, 1975.

7. Byrne, Eric J. A Formal Process Model for Software Reengineering. Contract Research,
Kansas State University, November 1991.

8. Cardow, James E. and Eric J. Byrne. "Verification and Validation in the Re-engineering
Process," Publication Pending (1992).

9. Chikohfky, Elliot J. and James H. Cross II. "Reverse Engineering and Design Recovery: A Tax-
onomy," IEEE Software, 13-17 (January 1990).

10. Chu, Wiliam and Sukesh Patel. "Software Restructuring by Enforcing Localization and Infor-
mnation Hiding," IEEE Conference on Software Maintenance, 42-49 (November 1992).

11. Hoare, C. A. R. Communicating Sequential Processes. Prentice-Hall, 1985.

12. Lewis, Ted. "Code Generators," IEEE Software, 67-69 (May 1990).

13. Lockheed Software Technology Center, Lockheed Palo Alto Research Laboratory, Organization
9610, Building 254E, 3251 Hanover Street, Palo Alto, CA 94304-1187. Software User's Manual
for the Automatic Programming Technologies for Avionics Software (APTAS) System, June
1991.

14. Miller, Alan I. Pascal Programs For Scientists and Engineers. Berkeley, California: SYBEX,
Inc., 1981.

15. Neighbors, James M. "The Draco Approach to Constructing Software from Reusable Compo-
nents," IEEE Transactions on Software Engineering, SE-10(5):564-574 (September 1984).

16. Pressman, Roger S. Software Engineering: A Practitioner's Approach. New York, New York:
McGraw-Hill Book Company, 1987.

17. Rugaber, Spencer, et al. "Recognizing Design Decisions in Programs," IEEE Software, 46-54
(January 1990).

18. Spivey, J. M. Understanding Z. Cambridge University Press, 1988.

BIB-I

Vita

Captain Chester A. Wright, Jr. was born on 21 September 1954 in Greenville, Mississippi. He

graduated from Greenville High School in 1972, and in 1974 he joined the USAF. Upon completion

of basic training, he received technical training at Chanute AFB, IL and was later stationed at

Ellsworth AFB, SD. There he worked as a Missile Systems Analyst Specialist and a Maintenance

Scheduler until November 1979. Captain Wright proceeded to Lowry AFB, CO and received tech-

nical training as a Precision Measuring Equipment Specialist and remained at Lowry as a Technical

Instructor until January 1984. During this period he also received an Associate in Applied Science

in General Electronics Technology from the Community College of the Air Force. He attended the

University of Colorado at Denver and graduated with a Bachelor of Science in Electrical Engineer-

ing in August 1986. Upon graduating from Officer Training School in April 1987, he was assigned

to the Electronic Security Command as an Operational Test and Evaluation manager. Captain

Wright entered the School of Engineering, Air Force Institute of Technology, in May 1991.

Permanent address: 414 Coleman Street
Greenville, MS 38701

VITA-1

REPOT DCUMNTATON AGEForm Approved
REPO T D CUMETATON P GE0MB No 0704-0 188

... '" P t '

1. AGLNC1 USE OL~Y i dav - b lan k 2. REPORT DATE 2REPORT Tor AIN) DA"ES .ov ~r-.E

4. TITLE AND SUEITI1LE S. FUNDINGC NUMVBERS

Design JPecovery for Software Library Population

6. AL'TkIOR,1S)

ICheste-r A. Wright., Jr., Captain, USAF'

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAF13 Oil 45433-6583 A FiT1/GCS/ENG/921)-23

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

Wright Laboratories/ AART
WVrighit-lPatterson AFB, 011 45433-6543

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for p)ublic relcase; distribution un~limited

13. ABSTR1ACT (Max imurn 200 words)
'llie thesis research investigated design recovery as, a mieans of p~opulatinlg a reuse library. The targeted library
was part of Hie Automiatic IProgranniiniig l'eclillologies for Avionics Systcmis (APTAS). APTAS uses a knowledge
base of forins, to present questions to a user, and rules, to select the forins to present and choose existing library
inodules to use ins comnposing a new system. The approach applied the reengineering model developed by Eric
IByrne to accomiplish planning for the project, expanded tile renovation phase of this model to cover the actual
jdesign recovery, and app~lied the expanlded mnodel to populatinlg tihe library.
Using the miodel ill the project showed that design recovery is feasible in populating the library. However, if
lie recovered design could not lhe ulsed directly, it could be used as a guide ill *Cvelolpilg neCw colilpolents.
\dditionally, cerl-aill mIodulesC make better canldidlates thlan others. IdeAl calldidates are self-contained in that

1they receive a valuec, pierforll it comlputationl, anid retuirn a value. Once the module starts p~erform~inlg too ~Inaliy
-op~erationls, expertise is required in the niodule behlavior in order to separate tile contponent for reuse.

W4 SUBJECT TERMS' 115. NUMBER OF PAGES
Software Maintenance, Reverse Enlgineering, Design Recovery, CIUL, FO~rTRAN, 92

AIPTAS 16. PRICE CODE ASRC

*17. SECURITY CLSIIAIN 18. SECURITY CLSIIAIN 1.SECURITY CLASSIFICATION 20. LIMITATION OF ASRC
OF REPORT OF THIS PAGE I OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 754().7..2130 Starclard ýUlfrn 298 (Re'v 2 89)
I' ~ bý A!Jl kid /IN *8

